Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flesh-eaters make skin creep

06.12.2001


Bacteria (red) persuade skin cells (green)to let them in.
© Nature


Bacteria give skin cells their marching orders.

Bacteria that cause potentially lethal ’flesh-eating’ infections make their entrance by telling skin cells to step aside. The bugs hijack the body’s signal for skin cells to become mobile.

Group A streptococci (GAS) normally infect the surface lining of the throat. But occasionally they penetrate skin or the tissues lining the airways, invading deep into the body and causing life-threatening disease.



Finding out how streptococci enter tissues doesn’t reveal why merely troublesome bacteria sometimes turn lethal. But it may lead to treatments for severe infections, called necrotizing fasciitis, and sore throats.

Michael Wessels and Colette Cywes at Harvard Medical School in Boston find that GAS are covered with a cloak of molecules that mimic a signal that is normally sent to mobilize cells1. "Cells don’t know any better - they think this is a signal to get up and move," says Wessels.

Like mortar being removed from a brick wall, the impenetrable layer of skin cells dissolves, allowing the bacteria in.

"This generates a new dogma," says Lukas Huber, a cell biologist at the Molecular Pathology Research Institute in Vienna, Austria. Invading bacteria normally infect and destroy individual cells. "Clearly [GAS] are much smarter than that," he says.

GAS’ deceitful cloak resembles a signalling chemical called hyaluronic acid. This is released when cells must be rearranged - to heal wounded skin, for example. "The bacteria subvert this normal function," says Wessels.

Hyaluronic acid - or its bacterial doppelganger - binds to a receptor on the cell surface called CD44. When this happens " the junctions [between the cells] just open," says Huber.

Wolf in sheep’s clothing

Wessels and Cywes infected laboratory cultures of human skin with GAS. They saw the skin-cell membranes ’ruffling’, a sign that they had let go of their neighbours. A mutant form of GAS unable to produce the deceptive molecular coat was unable to penetrate skin.

Wessels and Cywes are now working to prevent GAS infection by blocking the CD44 receptors on cells, or interfering with GAS binding. They hope to gain an understanding of why GAS turn nasty, although that may have more to do with the infected individual than the bacteria, Wessels suspects.

"There are host issues that play a big role in who’s going to get the disease," says Elaine Tuomanen, an infectious disease expert at St Jude’s Children’s Research Hospital in Memphis, Tennessee.

In the meantime, Wessel’s team hopes to develop a treatment to prevent throat infections with GAS.

"That’s certainly where the money is," comments Tuomanen.

References

  1. Cywes, C. & Wessels, M. R. Group A Streptococcus tissue invasion by CD44-mediated cell signalling. Nature, 414, 648 - 652, (2001).


TOM CLARKE | © Nature News Service
Further information:
http://www.nature.com/nsu/011206/011206-12.html

More articles from Life Sciences:

nachricht Tiny probe that senses deep in the lung set to shed light on disease
17.06.2019 | University of Edinburgh

nachricht Exciting Plant Vacuoles
14.06.2019 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

Im Focus: Cost-effective and individualized advanced electronic packaging in small batches now available

Fraunhofer IZM is joining the EUROPRACTICE IC Service platform. Together, the partners are making fan-out wafer level packaging (FOWLP) for electronic devices available and affordable even in small batches – and thus of interest to research institutes, universities, and SMEs. Costs can be significantly reduced by up to ten customers implementing individual fan-out wafer level packaging for their ICs or other components on a multi-project wafer. The target group includes any organization that does not produce in large quantities, but requires prototypes.

Research always means trying things out and daring to do new things. Research institutes, universities, and SMEs do not produce in large batches, but rather...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

A new paradigm of material identification based on graph theory

17.06.2019 | Materials Sciences

Electron beam strengthens recyclable nanocomposite

17.06.2019 | Materials Sciences

Tiny probe that senses deep in the lung set to shed light on disease

17.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>