Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Receptor Plays Key Role In Stem Cells’ Pluripotency

05.12.2001


Scientists at the University of Pennsylvania have identified a receptor that plays a key role in restricting embryonic stem cells’ pluripotency, their ability to develop into virtually any of an adult animal’s cell types.
The work is the first demonstration of a mechanism by which pluripotency is lost in mammalian embryos, one that operates with nearly the precision of an on/off switch in mouse embryos.

With further study, the receptor, dubbed GCNF, could open the door to new ways of creating embryonic stem cells without the ethical concerns associated with sacrificing embryos. GCNF, short for germ cell nuclear factor, was detailed in a recent paper in the journal Developmental Cell.


"In a sense, we’re hoping that understanding what GCNF actually does as it shuts down genes will let us turn back the clock on cellular development," said senior author Hans R. Schöler, professor of animal biology at Penn’s School of Veterinary Medicine. "This knowledge may permit us to convert ordinary adult cells back to embryonic stem cells for research purposes."

Schöler, also the director of Penn’s Center for Animal Transgenesis and Germ Cell Research, said GCNF is the first factor known to repress the key gene Oct4, which is expressed in pluripotent embryonic cells.

While GCNF is likely just one cog in a complex cellular machinery that dictates pluripotency among the cells of mouse embryos, Schöler’s team believes it is a crucial player: without GCNF, restriction of pluripotency does not occur properly and the embryo eventually dies.

"The identification of GCNF as a repressor of Oct4 expression opens up several new avenues for understanding Oct4 regulation and, therefore, the control of the pluripotent state," wrote Peter J. Donovan of Thomas Jefferson University in an analysis appearing in the November issue of Nature Genetics. "The identification of a nexus between Oct4 and GCNF provides some critical clues as to how the differences between pluripotent and differentiated cells are established and maintained."

Active in a very limited population of cells, Oct4 is the only gene known to play an essential role in maintaining pluripotency. Whenever its expression is suppressed, as by GCNF, pluripotency is lost. Oct4’s tightly regulated activity decreases steadily as embryonic stem cells differentiate; GCNF eventually restricts Oct4’s expression in the body’s somatic cells, leaving expression only in the germ cell lineage.

With President Bush’s August declaration that federally funded research would be limited to stem cell lines already harvested from frozen embryos, many researchers are looking to alternative sources. Embryonic stem cells’ scientific appeal lies in their pluripotency: they have not yet determined their ultimate role, so each has the potential to become one of more than 200 tissue types in the body.

Scientists can now isolate stem cells, induce them to multiply and preferentially direct them to become, for example, skin cells, nerve cells or heart cells. This opens the door to replacing damaged adult cells that are not able to regenerate and may ultimately allow scientists to grow replacement organs for those in need of a new heart, lung or liver.

Schöler was joined in the September Developmental Cell paper by Guy Fuhrmann and Ian Sylvester of Penn; Arthur C.K. Chung, Kathy J. Jackson, Geoffrey Hummelke and Austen J. Cooney of Baylor College of Medicine; Aria Baniahmad of the University of Giessen in Germany; and Julien Sutter of the Centre du Neurochimie in Strasbourg, France.

Their work was funded by the National Institutes of Health, the Marion Dilley and David George Jones Funds and the Commonwealth and General Assembly of Pennsylvania.

Steve Bradt | International Science News
Further information:
http://unisci.com/stories/20014/1204015.htm

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers watch quantum knots untie

After first reporting the existence of quantum knots, Aalto University & Amherst College researchers now report how the knots behave

A quantum gas can be tied into knots using magnetic fields. Our researchers were the first to produce these knots as part of a collaboration between Aalto...

Im Focus: A cavity leads to a strong interaction between light and matter

Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. Within this cavity, a single photon is emitted and absorbed up to 10 times by an artificial atom. This opens up new prospects for quantum technology, report physicists at the University of Basel and Ruhr-University Bochum in the journal Nature.

Quantum physics describes photons as light particles. Achieving an interaction between a single photon and a single atom is a huge challenge due to the tiny...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Composite metal foam outperforms aluminum for use in aircraft wings

23.10.2019 | Materials Sciences

Researchers watch quantum knots untie

23.10.2019 | Physics and Astronomy

A technology to transform 2D planes into 3D soft and flexible structures

23.10.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>