Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A fundamentally new approach to improving cancer chemotherapy

07.06.2006
A new strategy for getting anti-cancer drugs to kill cancer cells, without causing serious harm to normal cells in the body, is reported in the current [June] issue of ACS Chemical Biology, a monthly peer-reviewed journal of the American Chemical Society.

The approach, tested in laboratory experiments with several existing anti-cancer drugs, could offer substantial benefits for cancer patients, according to Jeffrey P. Krise, Ph.D. Krise led a group of pharmaceutical and medicinal chemists at the University of Kansas at Lawrence who did the research.

The new approach would allow anticancer drugs to accumulate in both normal and malignant cells. The drugs, however, would be tweaked by giving them "basic" chemical properties. In chemistry, "basic" means an alkaline substance like baking soda or laundry detergent, which has properties opposite those of acidic substances.

Normal cells simply isolate anti-cancer drugs with basic properties, greatly reducing the toxic effects. Cancer cells, in contrast, have an impaired ability to isolate basic substances, and get hit with a full blast of toxicity.

"It could allow cancer patients to tolerate higher and more effective doses of chemotherapy before normal cells are damaged to an extent that causes serious side effects and cessation of therapy," Krise said. "The approach is completely different from previous attempts that were designed to deliver drugs only to cancer cells and not normal cells."

"The results of our studies should lead to the development of rationally designed molecules that are more selective and produce fewer side effects," Krise explained. "Importantly, this technology can also be used to modify existing drugs and increase their selectivity."

Krise’s report describes a number of existing anti-cancer drugs that have basic properties, and notes that the new findings may provide the first explanation of why these drugs are so effective.

"There is obviously much more work to be done in order for the impact of the work to be fully appreciated and accepted," Krise said. "We are hopeful, at the current time, that this technology will have broad applicability."

The research team included Muralikrishna Duvvuri, Ph.D., Samidha Konkar, Ph.D., Kwon Ho Hong, Ph.D., and Brian S. J. Blagg, Ph.D.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>