Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dartmouth heart researchers discover new defect in artery growth

06.06.2006
From the beginning, arteries and veins are different in the way they branch into vascular networks, say Dartmouth heart researchers. They have identified a new defect limited to arterial development.

The discovery, reported in the June issue of Developmental Cell, upends some theories about the origins of blood vessels and could change the nature of vascular biology research that seeks to harness the mechanisms of blood vessel growth for treatment.

"This is the first demonstration of a vascular branching defect that is limited to arteries," says Dr. Michael Simons, professor of medicine and of pharmacology and toxicology at Dartmouth Medical School and chief of cardiology at Dartmouth-Hitchcock Medical Center, who led the international team. "It appears that venous and arterial endothelial cells are fundamentally different from day one. Just because they are endothelial cells doesn’t mean they are the same."

Blood vessel growth, called angiogenesis, is a double-edged sword. It aids in circulation and wound healing, but also feeds cancer tumors. Most attempts at therapeutic angiogenesis to stimulate growth of arteries have failed, Simons notes. One of the reasons may be the tendency to use venous cells to study potential therapeutic agents. "Our findings indicate that you have to choose the endothelial cell type to study to fit question you ask. So, to think about how to understand the forces of artery formation, we need to study arterial endothelial cells."

The researchers determined that an intracellular protein synectin is a key regulator of arterial growth. Using mice and zebra fish, they showed that disruption of synectin impairs arterial development. Knocking down levels in zebra fish or eliminating them in mice, they found, "resulted in profound reduction in size and complexity of the arterial network, while remarkably, not affecting venous development," the team reports. The synectin gene is expressed in every cell type in body, yet the defect is only arterial.

Homing in on the molecular process, the team found that the synectin deficient arterial endothelial cells did not make the thin membrane extensions characteristic of moving cells. Normally, a protein called Rac1 is activated to initiate the formation of the filaments, called lamellipodia. Synectin deficient arterial endothelial cells appear to have a defect that prevents the movement of the activated Rac1 protein to the cell edge to form lamellipodia.

When arteries are clogged in coronary artery disease, patients form extra arteries called collaterals to help blood bypass the obstruction. However, some patients cannot form many collateral arteries, and those patients have more serious heart disease, Simons explains. Early studies suggest that abnormal synectin gene expression may explain the absence of extra arteries in some of the patients.

Mednews | EurekAlert!
Further information:
http://www.Dartmouth.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>