Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gut reaction: Researchers define the colon’s genome

02.06.2006
For the first time, scientists describe the busy microbial world inside

For the first time, scientists have defined the collective genome of the human gut, or colon. Up to 100 trillion microbes, representing more than 1,000 species, make up a motley "microbiome" that allows humans to digest much of what we eat, including some vitamins, sugars, and fiber.

In a study published in the June 2 issue of Science, scientists at The Institute for Genomic Research (TIGR) and their colleagues describe and analyze the colon microbiome, which includes more than 60,000 genes--twice as many as found in the human genome. Some of these microbial genes code for enzymes that humans need to digest food, suggesting that bacteria in the colon co-evolved with their human host, to mutual benefit.

"The GI tract has the most abundant, diverse population of bacteria in the human body," remarks lead author Steven Gill, a molecular biologist formerly at TIGR and now at the State University of New York in Buffalo. "We’re entirely dependent on this microbial population for our well-being. A shift within this population, often leading to the absence or presence of beneficial microbes, can trigger defects in metabolism and development of diseases such as inflammatory bowel disease."

As in studies of other animals, the scientists began by collecting droppings. They collected fecal samples from two anonymous, healthy adults who’d gone without antibiotics or other medications for a year prior to the study. The researchers created DNA libraries based on the samples, generating a total of 65,059 and 74,462 sequence reads, respectively, from the two subjects. They found evidence for several hundred bacterial phylotypes, most falling into two divisions of bacteria known as Firmicutes and Actinobacteria. In addition, a microbial organism known as a methanogenic archaeon, Methanobrevibacter smithii, was prominent.

To assess the diversity of the colon microbiome, the researchers used two strategies. First, they matched their gut microbial DNA sequences up to two databases, one containing 16s rDNA gene sequences and the other containing non-redundant protein sequences. Second, they compared the colon-culled sequences to two previously sequenced human gut organisms: a bacterium, Bifidobacterium longum, and the archaeal microbe M. smithii. These known organisms showed striking similarity to much of the microbiome residents.

Based on the sequence comparisons, the researchers conclude that the human GI tract hosts multiple strains of B. longum, and a majority of its archaeal species is related M. smithii. How many unique bacterial genera or species exist in the colon community? By comparison to the outside world, Gill suspects the human gut is at least as complex as our soils or seas. With the evidence at hand, the researchers have described greater diversity in the human gut than researchers have reported for samples of acid mine drainage.

These microbes are busy, too. The new study shows that resident microbes in the colon actively synthesize vitamins and break down plant sugars, such as xylan and cellobiose (similar to cellulose), which humans could not otherwise digest because we lack the necessary enzymes. Cellobiose, for instance, is a key component of plant cell walls and thus is found in most edible plants, such as apples and carrots.

The new study advances the growing field of metagenomics, or the study of many genomes found in a given ecosystem. Scientists at TIGR and elsewhere have recently scooped up whole environmental samples, from soil to sea, to study the diverse genomes contained within them. The idea is to survey a complex community in one fell swoop, examining how whole ecosystems of genomes respond to environmental perturbations--and, in the case of humans, how microbial ecosystems contribute to health and disease.

"This study is an important first step toward identifying microbial differences between healthy people and those with conditions ranging from Crohn’s Disease to cancer," says co-author Karen Nelson of TIGR, who has previously studied the guts of termites and other animals. "We might compare different individuals, with different diets, for instance."

More broadly, the new work could become the opening salvo of a Human Microbiome Project that defines the microbial side of ourselves, suggests co-author Jeffrey Gordon, a microbiologist at Washington University in St. Louis. Gordon envisions such a project pursuing fundamental questions. How different are our microbiomes? Should differences in our microbiomes be viewed, along with our immune and nervous systems, as features of our biology that are affected by our individual environmental exposures? How is the human microbiome evolving as a function of our changing diets, lifestyle, and biosphere? Finally, how might we alter these microbial communities for better health in a person or population?

Kathryn Brown | EurekAlert!
Further information:
http://www.tigr.org/

More articles from Life Sciences:

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

nachricht Colorectal cancer risk factors decrypted
13.07.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>