Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Colorful, Rare-Patterned Male Guppies Have Survival Advantage In The Wild

01.06.2006
Any owner of a freshwater aquarium likely has had guppies (Poecilia reticulata), those small brightly colored fish with a propensity for breeding. Now guppy populations manipulated in natural habitats in Trinidad have taught researchers an evolutionary lesson on the survival of a rare genetic trait.

Reporting in the June 1 issue of the journal Nature, scientists from six institutions detail how male guppies with the most colorful - and most rare - patterns are more likely than their more commonly colored counterparts to survive in the wild.

"This study provides very solid support for frequency-dependent survival," said principal investigator Kimberly A. Hughes, an animal biologist at the University of Illinois at Urbana-Champaign. "We found that rare color patterns of these guppies had a highly significant survival advantage."

In evolutionary terms, frequency-dependent survival means that individuals with rare gene variants have a survival advantage relative to common variants, simply as a function of being rare. This process is important because it leads to the maintenance of many different variants (polymorphism) in the same population.

The same process could be important in the maintenance of genetic variants in humans, said Hughes, who also is a member of the Institute for Genomic Biology at Illinois.

For example, she said, it has been hypothesized that genes involved in pathogen resistance (the Human Leukocyte Antigen or HLA genes) are highly polymorphic because pathogens are most successful at attacking individuals with common variants, and individuals with rare variants have higher survival.

However, the theory is difficult to test, and, in general, frequency-dependent survival has been difficult to document as an important process in nature, Hughes said.

The guppy system provided a way to test whether this kind of selection could really promote polymorphism in a natural setting, because guppies are highly polymorphic for a visible trait and they are easy to work with in field experiments.

Researchers conducted 34 separate manipulations across 19 replicate pools in three streams over four years. They collected guppies from two tributaries of the Quare River and the main branch of the Mausica River, sorted the males and females, and then returned them to the streams.

"We had two different color patterns at a particular site," Hughes said. "In half the replicates we made pattern 1 rare and pattern 2 common, and in the other replicates we made pattern 2 rare and pattern 1 common. This allowed us to determine that it was rarity itself, and not any specific aspect of the color pattern that had the biggest effect on survival. No matter which pattern was rare or common, the rare type had higher survival."

After 15 or 17 days, depending on location, the researchers again sought and captured all adult-sized guppies from the streams. The rare males had higher survival at all three sites. Overall, 84 percent of the rare-type males survived to the end of the experiment, while only 69 percent of the common-type males survived.

The most important source of mortality in wild guppies is predation by larger fish species that live in the same streams. "It’s possible that guppy predators, which are known to hunt visually, may be more focused on common color patterns," Hughes said.

"Predators can form ’search images’ of the most common prey types, and can be less efficient at locating and capturing prey that look different from the norm," she said. "These predators have limited attention. Perhaps this generates a frequency-dependent predation pattern that by its very operation acts to maintain polymorphism."

An alternative theory is that male guppies altered their own behavior in response to the manipulated changes in their common vs. rare numbers, and that the changed behaviors affected predation, the authors wrote. They suggest new experiments to study behaviors in both predators and prey to determine which theory is at work.

In earlier studies, Hughes and colleagues had shown that female guppies prefer to mate with males with color patterns novel to the females. It could be, the authors surmise in the Nature paper, that females might prefer the rare males because mating with them lowers their own risk to predation.

The six co-authors with Hughes were: Robert Olendorf, a postdoctoral researcher in the School of Integrative Biology at Illinois; F. Helen Rodd and David Punzalan, department of zoology at the University of Toronto; Anne E. Houde, department of biology at Lake Forest College in Illinois; Carla Hurt of the Smithsonian Tropical Research Institute, Naos Marine Laboratory, Panama City, Panama; and David N. Reznick, department of biology, University of California at Riverside.

The work was supported by grants from the National Science Foundation to Hughes, Houde and Reznick, and by a grant from the Natural Sciences and Engineering Research Council of Canada to Rodd. During 1996, Hughes also was supported by a National Research Service Fellowship from the National Institutes of Health, and Rodd by a grant from the Center for Population Biology at the University of California at Davis.

Jim Barlow | University of Illinois
Further information:
http://www.news.uiuc.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>