Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Super-sized cassava plants may help fight hunger in Africa

29.05.2006
In a recent study, genetically modified cassava plants produced roots that were more than two-and-a-half times the size of normal cassava roots.

The findings could help ease hunger in many countries where people rely heavily on the cassava plant (Manihot esculenta) as a primary food source, said Richard Sayre, the study’s lead author and a professor of plant cellular and molecular biology at Ohio State University.

The researchers used a gene from the bacterium E. coli to genetically modify cassava plants. The plants, which were grown in a greenhouse, produced roots that were an average of 2.6 times larger than those produced by regular cassava plants.

“Not only did these plants produce larger roots, but the whole plant was bigger and had more leaves,” Sayre said. Both the roots and leaves of the cassava plant are edible.

Cassava is the primary food source for more than 250 million Africans – about 40 percent of the continent’s population. And the plant’s starchy tuberous root is a substantial portion of the diet of nearly 600 million people worldwide.

Sayre said he hopes to offer these plants to countries where cassava is an important crop.

The current study appears in the online early issue of the Plant Biotechnology Journal. Sayre collaborated with Ohio State colleague Uzoma Ihemere and scientists from BASF Plant Science in Research Triangle Park, N.C., and BARC-West in Beltsville, Md., who formerly worked on this project in his laboratory.

Sayre said that cassava produces sugar more efficiently than any other cultivated plant.

“We wanted to find a way to help the plant redirect that excess sugar and use it to make starch,” Sayre said.

The researchers used a variety of cassava native to Colombia (cassava was brought to Africa from South America by the Portuguese in the 1500s.) They inserted into three cassava plants an E. coli gene that controls starch production. A non-modified fourth plant served as a control.

“Cassava actually has this same gene,” Sayre said. “But the bacterial version of the gene is about a hundred times more active.”

The modified plants converted more of their sugar into starch, as shown by an increase in root size as well as the number of roots and leaves produced by each modified plant.

The roots of the modified plants were up to 2.6 fold larger than the roots of a non-modified plant (an average of 198 grams for the biggest roots vs. 74 grams for the roots of the non-modified plant.) The modified plants produced a maximum of 12 roots, compared to the seven roots produced by the non-modified plant. These modified plants also produced a third more leaves – a maximum of 123 leaves per modified plant vs. 92 leaves per non-modified plant.

Sayre said that the bigger roots produced by the plants were just that – bigger. They weren’t necessarily more nutritious. And they would still need to be processed quickly and properly after harvesting, as the roots and leaves of poorly processed cassava plants contain a substance that triggers the production of cyanide.

In previous work, Sayre helped create cassava that produced little to no cyanide once it is harvested.

He is also the principal investigator of an ongoing project focused on improving the nutritional content of cassava. In this work Sayre leads a team of national and international scientists focused on increasing the vitamin, mineral and protein content of the plant.

The current study was supported in part by the Rockefeller Foundation, the Centro Internacional Agricultura Tropical (CIAT) and Ohio State.

Richard Sayre | EurekAlert!
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>