Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research reveals control of potent immune regulator

24.05.2006
A new study reveals how the production of a potent immune regulator called interferon gamma (IFNg) is controlled in natural killer (NK) cells, immune cells that typically defend the body against cancer and infections.

IFNg, produced by NK cells and other cell types, plays a critical role in killing pathogen-infected cells and in defending against tumor cells. However, overproduction of IFNg is also dangerous to the body and can cause autoimmune diseases. But exactly how the body tightly controls IFNg production – and, therefore, NK-cell activity – is not known.

The study, published in the May issue of the journal Immunity, looked at substances called pro-inflammatory cytokines, which cause NK cells to make IFNg and stimulate their activity. It also looked at transforming growth factor beta (TGFb), a substance also made by NK cells that lowers IFNg production.

The research, by investigators with the Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, found that the pro-inflammatory cytokines not only cause NK cells to make IFNg, but they also shut down TGFb signaling, which inhibits production of IFNg.

That is, the cytokines not only increase some positive regulators of IFNg production, but they also shut down the TGFb signals that inhibit IFNg production.

In addition, the scientists found that TGFb turns down IFNg production – and, therefore, NK cell activity – both directly and indirectly.

The direct mechanism turns off the IFNg gene itself. The indirectly mechanism blocks a protein that normally turns up IFNg production.

“Our findings provide important details about the fine balance between positive and negative regulators of IFNg production in NK cells,” says principal investigator Michael A. Caligiuri, director of the OSU Comprehensive Cancer Center. “Mother Nature uses a symphony of cytokines that result in exquisitely tight control of its production in the healthy state.

“This might help us harness the cancer-killing ability of NK cells to control tumor growth and lead to new treatments that complement current cancer therapy,” he says.

The body carefully regulates IFNg levels. If there is too little of the substance, the risk of infection and cancer rises. If there is too much IFNg, NK cells become too plentiful and autoimmune diseases such as inflammatory bowel disease can occur.

“Our findings explain the yin and yang of the system that controls NK cells,” says first author Jianhua Yu, a post-doctoral student in Caligiuri’s laboratory. “When NK cells are called into action, the body not only turns up the activation pathway, it also shuts down the anti-activation pathway.”

Likewise, when TGFb turns down NK cell activity, it not only turns off the IFNg gene, it also shuts down the pathway that activates the gene.

“In each instance, these regulatory cytokines deliver a double whammy,” Caligiuri says. “They turn on what is needed and turn off anything that interferes with it.”

Funding from the National Cancer Institute supported this research.

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>