Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New form of oxygen found

16.11.2001


Oxygen piles up: the four atom form might make good fuel.
© Photodisc


Scientists have detected a molecule they’ve been looking for since the 1920s.

Scientists in Italy have discovered a new form of oxygen1. In addition to the two well-known forms - ozone and the oxygen molecules in air - there is a third, they say, in which oxygen atoms are grouped in fours.

The oxygen molecules that we breathe (denoted O2) consist of two oxygen atoms. This, the most stable form of oxygen, makes up about one-fifth of air. Ozone is more reactive and comprises three oxygen atoms (O3). It is formed in the atmosphere in small quantities when sunlight splits O2 into its component atoms, which then recombine.



Now Fulvio Cacace and colleagues at the University of Rome ’La Sapienza’ have produced evidence of O4. The existence of such a molecule has been predicted since the 1920s, but extensive searches for it have yielded only tentative previous sightings.

Several chemical elements exist in more than one form or ’allotrope’. Carbon, for instance, forms diamond and graphite, as well as hollow, cage-like molecules called fullerenes and nanotubes. The atoms are arranged differently in each of these forms.

The interest in new oxygen allotropes is not purely theoretical. Liquefied ordinary oxygen (O2) is used as a rocket fuel (called LOX), as it reacts energetically with fuels such as hydrogen and hydrocarbons. As the O4 allotrope packs a lot of oxygen into a small space, it might be even more energy-dense.

O4 might also make a fleeting appearance in atmospheric chemical reactions that are responsible for the phenomenon of ’nightglow’ on Earth and other planets.

Four sight

To prove conclusively that they had identified O4, Cacace’s team used mass spectrometry. This technique separates a mixture of electrically charged molecules (ions) according to their mass and charge.

The researchers combined O2 molecules and positively charged O2 ions to produce O4 ions, which are identifiable by being four times as massive as oxygen atoms. They then added an electron to each O4 ion, transforming it to a neutral molecule.

After a short interval, the team stripped an electron from each O4 molecule so that they could detect them again as ions (neutral molecules are invisible to mass spectrometry). They reasoned that if the neutral molecules were sufficiently stable, they would show up when re-ionized - as indeed they did.

What O4 looks like is still a mystery. Earlier theoretical calculations suggested two possibilities: a rhombus-shaped molecule with an atom at each corner, or a triangle of atoms with the fourth in the centre. But neither of these options fits the researchers’ results very well.

Instead, they think that O4 is probably composed of two dumbbell-like O2 molecules that are loosely bound together.

References

  1. Cacace, F., de Petris, G. & Troiani, A. Experimental detection of tetraoxygen. Angewandte Chemie International Edition, 40, 4062 - 4065 , (2001).

PHILIP BALL | © Nature News Service
Further information:
http://www.nature.com/nsu/011122/011122-3.html

More articles from Life Sciences:

nachricht Phagocytes versus killer cells - A closer look into the tumour tissue
21.10.2019 | Universität Duisburg-Essen

nachricht How intestinal cells renew themselves – the role of Klumpfuss in cell differentiation
21.10.2019 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Fraunhofer LBF and BAM develop faster procedure for flame-retardant plastics

21.10.2019 | Materials Sciences

For EVs with higher range: Take greater advantage of the potential offered by lightweight construction materials

21.10.2019 | Materials Sciences

Benefit and risk: Meta-analysis draws a heterogeneous picture of drug-coated balloon angioplasty

21.10.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>