Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Pinball protons’ created by ultraviolet rays and other causes can lead to DNA damage

19.05.2006
Researchers have known for years that damaged DNA can lead to human diseases such as cancer, but how damage occurs--and what causes it--has remained less clear.

Now, computational chemists at the University of Georgia have discovered for the first time that when a proton is knocked off one of the pairs of bases that make up DNA, a chain of damage begins that causes "lesions" in the DNA. These lesions, when replicated in the copying mechanisms of DNA, can lead to serious disorders such as cancer.

The research, just published in the Proceedings of the National Academy of Sciences (PNAS), was led by doctoral student Maria Lind and Henry F. Schaefer III, Graham-Perdue Professor of Chemistry. Other authors on the paper are doctoral student Partha Bera, postdoctoral associate Nancy Richardson and recent doctoral graduate Steven Wheeler.

Call it a "pinball proton." While chemists have shown other causes of DNA damage, the report in PNAS is the first to report how protons, knocked away by such mechanisms as radiation or chemical exposure, can cause lesions in DNA. The work was done entirely on computers in the Center for Computational Chemistry, part of the Franklin College of Arts and Sciences at UGA.

"This kind of damage in DNA subunits is about as basic as you can get," said Schaefer. "This is the simplest kind of lesion possible for such a system."

The double-helix structure of DNA has been known for more than half a century. This basic building block of life can "unzip" itself to create copies, a process at the heart of cell replication and growth. DNA is made of four "bases," Adenine, Guanine, Thymine and Cytosine, and each one pairs with its opposite to form bonds where the "information" of life is stored. Thus, Guanine pairs with Cytosine, and Thymine with Adenine.

The team at the University of Georgia studied how the removal of a proton from the Guanine-Cytosine (G-C) base pair is involved in creating lesions that can lead to replication errors. This pair has 10 protons, meaning there are numerous targets for processes that knock the protons off.

The lesions are breaks in the hydrogen bonds, of which there are two in the G-C base pair. (The Adenine-Thymine pair has three hydrogen bonds.)

"Our real goal is to examine all possible lesions in DNA subunits," said Lind.

The team discovered that the base pair minus its knocked-off proton can either break entirely or change its bonding angle--something that also causes improper replication.

"The C-G subunit is usually totally planar [flat]," said Lind. "If it twists, it could simply pull apart."

Though it has already been suspected that lesions in DNA caused by both high- and low-energy electrons result in cancer cell formation, the new study is the first evidence that protons do the same thing.

The study in PNAS also has other implications. Researchers are beginning to understand how DNA can be used as "molecular wire" in constructing electrical circuits. Such a breakthrough would allow small electronic devices to shrink even further, but how the electrical properties of DNA would work in such a context is not yet understood. The UGA research adds important knowledge about how so-called "deprotonated" DNA base pairs work and could be important in creating "DNA wire."

Kim Carlyle | EurekAlert!
Further information:
http://www.uga.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>