Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research finds surveys of larval-stage organisms effective for measuring marine biodiversity

15.05.2006
BU biologist discovers diversity in mantis shrimp underestimated

There is a push to document the biodiversity of the world within 25 years. However, the magnitude of this challenge is not well known, especially when it comes to vast and often inaccessible marine environments. To date, surveys of species diversity in the world’s oceans have focused on adult organisms, but new research from Boston University has found that studying marine life in its larval phase with DNA barcoding is a valuable way to estimate biodiversity.

Using this novel approach, Paul Barber, an assistant professor of biology at BU, discovered that biodiversity is greatly underestimated in the region of the Pacific known as the "Coral Triangle" and in the Red Sea. The study, which focused on coral reef-dwelling mantis shrimp (stomatopods), is the first to compare larval stage organisms to adults.

Through DNA barcoding – a new method not commonly used in aquatic settings – Dr. Barber and his colleague, Sarah Boyce of Harvard University, compared the DNA sequences of a random sampling of stomatopod larvae to a sequence database of most known mature species of mantis shrimp. The comparisons revealed numerous new varieties of shrimp that are completely unknown in their adult forms.

"Our results show that biodiversity in mantis shrimp in these regions is estimated to be at least 50 to 150 percent higher than presently believed," said Barber. "Given that few groups of marine organisms are as well studied as mantis shrimp, the biodiversity in other groups is likely even more poorly known. What’s unique about this study is that we didn’t just discover new species, we used DNA barcoding to quantify how much biodiversity is out there that we don’t know about."

According to Barber, the results suggest that examining marine life in the larval stage offers a new and highly effective way to estimate biodiversity since most organisms have a developmental phase where minute larvae disperse on ocean currents.

"For some groups of organisms, scientists can more easily collect larvae for sampling since the habitats of the mature marine species can be totally unreachable," said Barber. "This method gives us a better idea of how well we know a particular area. There may be parts of the world that we think we know a lot about, like the Caribbean for example, but the sequencing of larva there may uncover countless more species that we never knew existed."

In addition to an alternative way to explore marine biodiversity, Barber hopes the findings will promote conservation. Despite being considered a "biodiversity hotspot," the Coral Triangle is one of the most threatened marine environments in the world. Often areas with particularly high rates of biodiversity are targeted for conservation, so the new method could help by highlighting potential regions for protection.

Barber also believes this new information will move scientists one step closer to the goal of documenting the entire world’s species, both in aquatic and terrestrial settings.

Kira Edler | EurekAlert!
Further information:
http://www.bu.edu

More articles from Life Sciences:

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

20.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>