Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Developmental biology : Integrin, the protein which gives cells a licence to roam

12.05.2006
CNRS researchers at the Institut Curie have shown in embryos that a cell-surface protein called ß1 integrin is essential for the formation of the enteric nervous system, which controls the passage of food through the gut.

If the cells destined to form the future enteric nervous system lack ß1 integrin, their capacity to migrate is impaired and they fail to colonize the whole intestine. This anomaly resembles Hirschsprung’s disease, a rare human congenital malformation. These findings also shed new light on how cancer becomes invasive when tumor cells acquire the ability to move around the body, giving rise to metastases. This discovery, which is reported in the May 2006 edition of Development, should enhance understanding of the development of Hirschsprung’s disease and tissue invasion in cancer.

Life’s great adventure starts when an ovum fuses with a spermatozoa to form an egg, which divides into two cells, then four, eight, and so forth, before the embryo attaches to the womb lining and develops. The embryo’s cells don’t just divide, they also specialize: some become nerve cells, others muscle or blood cells. They move around and join forces to form organs within the embryo, which progressively becomes a fetus. A “neural” tube subsequently forms throughout the length of the embryo and supplies all the cells needed to make the central nervous system, that is the brain and spinal cord, as well as the peripheral nervous system, the body’s other nerve cells.

The peripheral nervous system arises from a particular population of cells in the dorsal region of the neural tube. These so-called neural crest cells migrate through the embryo and invade the different tissues. For example, the cells that give rise to the enteric nervous system migrate towards the intestine that is being formed and colonize it by advancing to its distal end, the future rectum. It is only after they have invaded the whole intestine that the cells acquire all the special features of the enteric nervous system. In newborn babies and adults alike, these cells control the passage of food through the gut and its absorption during digestion.

Cell migration in formation of the enteric nervous system

Marie Breau in Sylvie Dufour’s group(1) is studying the formation of the enteric nervous system in mouse embryos, and particularly the role of integrins(2), the cell-surface proteins that anchor cells to their environment. Mice that do not express the gene of ß1 integrin cannot survive, so Marie Breau studied the consequences of “switching off” this gene in the neural crest cells of mouse embryos. Without ß1 integrin on their surface, the precursor cells of the future enteric nervous system fail to fully colonize the intestine and stop halfway down the colon because their ability to migrate is greatly impaired. The resulting “mutant” mice therefore lack a nervous system in the descending colon. This anomaly resembles Hirschsprung’s disease in humans, a rare congenital disorder which affects one in 5000 newborns (see Further information).

When tumor cells escape…

Colonization of the embryonic gut by cells from the neural crest has a number of points in common with the development of metastases in cancer patients. Certain cancer cells do not stop their progression after invasion of the original tissue but instead spread throughout the body. As long as the cancer cells remain where they are the tumor is localized and can be controlled by local treatment (surgery, radiotherapy), thereby curing the patient. However, if the cancer cells acquire the capacity to disseminate through the body, the tumor is considered to be metastatic and is more difficult to eradicate. The mouse model developed by the Institut Curie researchers should help us understand how metastases form, information essential to the improvement of cancer management.

Integrins, which are already known to be involved in the transformation of local tumors into invasive ones, appear to be possible targets for cancer treatments. It therefore seems doubly important to decode the mechanisms linking integrins to the process of tissue invasion.

(1) Cellular morphogenesis and tumor progression” group headed by Jean Paul Thiery – UMR 144 CNRS/Institut Curie “Subcellular structure and cellular dynamics”

(2) Integrins, which constitute a large family of proteins involved in signal transmission, control the proliferation, survival, migration and differentiation of cells.

Catherine Goupillon | alfa
Further information:
http://dev.biologists.org/
http://www.curie.fr

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>