Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infamous proto-oncogene, c-myc, turns up in a new role

12.05.2006
c-myc, a gene commonly involved in cancer onset, has been found to have a role in the immune system’s normal function according to a study published in the journal, Blood.

The surprising finding, by a Swiss research team led by investigators from the Lausanne Branch of the international Ludwig Institute for Cancer Research (LICR), showed that c-myc functions in the immune system’s ‘memory’ of previous infections.

In order to rapidly and efficiently respond to new infections, the immune system evolved such that it stores a ‘memory’ of previous attack by pathogens. The specialized cells involved in this process are known as ‘T memory cells’. The T memory cells are normally maintained at a low level that can be rapidly expanded if the pathogen is detected again. The maintenance of normal, low levels, or ‘homeostasis’, of T memory cells is dependent on a signalling factor, a so-called cytokine, known as

‘IL-15’.

“Very little is known about the signalling pathways that actually control IL-15-dependent homeostasis,” explains LICR’s Dr. H. Robson MacDonald, the senior author of the study. “By analyzing genetically engineered mouse models with reduced c-myc, reduced IL-15 or absent IL-15, we discovered that it’s actually c-myc, which is known primarily as an oncogene, that acts downstream of the IL-15 signaling pathway to regulate T memory cell homeostasis.”

According to Dr. MacDonald, the study is basic research that may have implications for therapies of the future. “Understanding how immune memory works might allow us to improve therapeutic vaccines against, say, malaria or cancer. The unexpected finding is that this study is also a cautionary tale. Before we design new therapies that inactivate a gene product, which is an approach being considered for c-myc in cancer, we need to be very sure that we are not going to be also destroying a vital role in a normal process such as the body’s immune system.”

Sarah White | alfa
Further information:
http://www.licr.org

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>