Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wasps queue for top job

11.05.2006
Scientists at UCL (University College London) have discovered that even wasps are driven by their status. The study, published today in Nature, shows that lower-ranked female wasps work harder to help their queen than those higher up the chain because they have less to lose, and consequently are prepared to take more risks and wear themselves out.

The study, funded by the Natural Environment Research Council (NERC), reveals that those higher up the chain and therefore with a greater chance of being the next in line to breed are much lazier than their lower-ranked nest-mates: rather than use up their energy in foraging to feed the queen’s larvae, high-rankers sit tight on the nest and wait for their chance to become queen themselves.

Dr Jeremy Field, UCL Department of Biology, said: “Helpers wait peacefully in an age-based queue to inherit the prize of being the queen or breeder in the group. The oldest female almost always becomes the next breeder. The wasps in this queue face a fundamental trade-off: by working harder, they help the group as a whole and as a result indirectly benefit themselves, but they simultaneously decrease their own future survival and fecundity because helping is costly. It involves energy-expensive flight to forage for food, and leaving the nest is dangerous. We have found that the brighter the individual wasp’s future, the less likely it is to take risks by leaving the safety of its nest to forage for food.”

The defining feature of eusocial animals - including insects like bees, ants and wasps, and vertebrates like meerkats and the naked mole rat – is that some individuals forgo their own reproduction to help rear the offspring of others. In hover wasps, helpers spend between 0 and 95 per cent of their time foraging to feed the queen’s larvae. Previous scientific thinking indicated that the variation in help given might be proportional to genetic relatedness. Those less closely related to the queen would help out less. This new study, however, shows that more distantly related wasps aren’t in fact lazier.

Instead, the team led by Dr Field, found that it is the likelihood of future reproduction that primarily determines a wasp’s behaviour - the more likely they are to spawn their own young in the future, the lazier they become.

The tests were carried out on the non-aggressive tropical hairy-faced hover wasp - Liostenogaster flavolineata. Both the wasp’s rank and the size of the group were manipulated to show how these variables affected the amount of help each individual contributed to the group. The team changed the position of individual wasps in the social hierarchy by removing higher ranked, older wasps, thus promoting their younger relatives.

Regardless of age, a wasp’s contribution to feeding the queen’s young depended only on its position in the queue to inherit queenship. Lower-ranked helpers, and helpers in smaller groups, worked hardest.

Alex Brew | alfa
Further information:
http://www.ucl.ac.uk

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>