Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

White blood cells from cancer-resistant mice cure cancers in ordinary mice

09.05.2006
White blood cells from a strain of cancer-resistant mice cured advanced cancers in ordinary laboratory mice, researchers at Wake Forest University School of Medicine reported today.

"Even highly aggressive forms of malignancy with extremely large tumors were eradicated," Zheng Cui, M.D., Ph.D., and colleagues reported in this week’s on-line edition of Proceedings of the National Academy of Sciences.

The transplanted white blood cells not only killed existing cancers, but also protected normal mice from what should have been lethal doses of highly aggressive new cancers.

"This is the very first time that this exceptionally aggressive type of cancer was treated successfully," said Cui. "Never before has this been done with any other therapy."

The original studies on the cancer-resistant mice – reported in 2003 – showed that such resistance could be inherited, which had implications for inheritance of resistance in humans, said Mark C. Willingham, M.D., a pathologist and co-investigator. "This study shows that you can use this resistant-cell therapy in mice and that the therapy works. The next step is to understand the exact way in which it works, and perhaps eventually design such a therapy for humans."

The cancer-resistant mice all stem from a single mouse discovered in 1999. "The cancer resistance trait so far has been passed to more than 2,000 descendants in 14 generations," said Cui, associate professor of pathology. It also has been bred into three additional mouse strains. About 40 percent of each generation inherits the protection from cancer.

The original group of cancer-resistant mice, also described in Proceedings of the National Academy of Sciences, successfully fought off a range of virulent transplanted cancers.

"Now we know that we can take white blood cells from this strange mouse and put them into a normal mouse and these cells will still kill cancers," said Willingham, professor of pathology and head of the Section on Tumor Biology. "This is therapy in a mouse that does not have this magical genetic inheritance."

The transplanted white blood cells included natural killer cells, and other white blood cells called neutrophils and macrophages that are part of the body’s "innate immune system." This system forms a first line of host defense against pathogens, such as bacteria.

"Their activation requires no prior exposure, but rather depends on a pre-determined mechanism to recognize specific patterns on the cancer cell surface," the researchers said.

Moreover, preliminary studies show that the white blood cells also kill "endogenous" cancers – cancers that spring up naturally in the body’s own cells.

Cui and Willingham said the research produced many other surprises. For one thing, if a virulent tumor was planted in a normal mouse’s back, and the transplanted white blood cells were injected into the mouse’s abdomen, the cells still found the cancer without harming normal cells. The kind of cancer didn’t seem to matter.

A single injection of cancer-resistant macrophages offered long-term protection for the entire lifespan of the recipient mouse, something very unexpected, they said.

"The potency and selectivity for cancer cells are so high that, if we learned the mechanism, it would give us hope that this would work in humans," said Cui. "This would suggest that cancer cells send out a signal, but normal white blood cells can’t find them."

Cui said the findings "suggest a cancer-host relationship that may point in a new therapeutic direction in which adverse side effects of treatment are minimal."

The next steps include understanding the molecular mechanism. "The real key is finding the mutation, which is an ongoing investigation in collaboration with several other laboratories," said Willingham.

Cui, Willingham and their colleagues also showed that highly purified natural killer cells, macrophages and neutrophils taken from the cancer-resistant mice killed many different types of cancer cells in laboratory studies in test tubes.

Besides Cui and Willingham, the team includes Amy M. Hicks, Ph.D., Anne M. Sanders, B.S., Holly M. Weir, M.S., Wei Du, M.D., and Joseph Kim, B.A., from pathology, Greg Riedlinger, B.S., from cancer biology, Martha A. Alexander-Miller, Ph.D., from microbiology and immunology, Mark J. Pettenati, Ph.D., and C. Von Kap-Herr, M. Sc., from medical genetics, and Andrew J.G. Simpson, Ph.D., and Lloyd J. Old, M.D., of the Ludwig Institute for Cancer Research in New York.

Robert Conn | EurekAlert!
Further information:
http://www.wfubmc.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>