Learning the language of DNA

A senior member of the consortium and IMB researcher Professor David Hume said transcriptome describes all of the information read from the genome by a cell at any given time.

“Essentially, we need to understand the language that cells use to read DNA in order to know how processes in the body are controlled,” Professor Hume said.

“This knowledge will be a major resource to the biomedical research community.”

Part of understanding the language of cells lies in identifying promoters – the DNA regions at the start of genes that regulate their activity.

“We have identified the core promoters of the large majority of genes in the mouse and human genomes, expanding the number of known promoters by five- to ten-fold,” Professor Hume said.

The findings of the consortium have also upended the traditional view that each gene has a single promoter and a single starting position.

The team found that, while genes that are only turned on in a specific tissue or at a specific point in time use the traditional model of a single start site, genes used in many tissues have a broad distribution of start sites.

This new model may help explain why some organisms, such as humans, are much more complex than simple organisms such as worms, despite having a similar number of genes.

If some genes have a broad range of start sites, individual species can differ subtly in the way they control these genes, meaning the genes can evolve faster, and organisms with these genes can become more complex.

The consortium also found that many pseudogenes – traditionally thought to be “fossils” of ancient genes – are actually active, and are therefore likely to have some as yet unknown function.

The results obtained by the FANTOM consortium, led by the Japanese scientific institute RIKEN and Genome Network Project, have been published in the current edition of the prestigious journal Nature Genetics in a paper of which Professor Hume is corresponding author and first co-author.

Media Contact

Professor David Hume EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Machine learning algorithm reveals long-theorized glass phase in crystal

Scientists have found evidence of an elusive, glassy phase of matter that emerges when a crystal’s perfect internal pattern is disrupted. X-ray technology and machine learning converge to shed light…

Mapping plant functional diversity from space

HKU ecologists revolutionize ecosystem monitoring with novel field-satellite integration. An international team of researchers, led by Professor Jin WU from the School of Biological Sciences at The University of Hong…

Inverters with constant full load capability

…enable an increase in the performance of electric drives. Overheating components significantly limit the performance of drivetrains in electric vehicles. Inverters in particular are subject to a high thermal load,…

Partners & Sponsors