Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Imaging Study Produces Genetic Brain Maps

08.11.2001


Scientists are finally beginning to understand how common genetic differences among individuals underlie differences in the structures that make up their brains. In the first attempt to actually map these variations, neurologist Paul Thompson and colleagues at the University of California at Los Angeles have discovered that brain structures related to cognitive ability and language seem to be under tight genetic control. The group’s findings, which could help explain how diseases like schizophrenia are passed on, will appear in a report in the December issue of Nature Neuroscience.



To construct their so-called genetic brain maps, the researchers scanned the brains of 20 sets of twins (ten fraternal and ten identical) with magnetic resonance imaging and combined the results to construct an average brain map for each kind of twin. In the brain map of identical twins pictured at the right, for example, brain areas exhibiting more variation appear in blue, whereas those showing less variation are red. These pairs of twins showed almost no differences in the amounts of gray matter in the frontal, sensory-motor and language-related parts of their cortexes. Fraternal twins, who share half of each other’s genes, showed more variation in these structures than did identical twins and less than unrelated individuals did, suggesting that "some areas of the brain are under tight genetic control—language in particular," Thompson explains. This genetic control may also extend partly to cognitive ability: study participants with more gray matter in the front of their brains scored higher on a common test designed to measure Spearman’s g, which is similar to IQ. "But this is quite a mild correlation," Thompson says. "You can’t predict an individual’s IQ from a brain scan, and I think that’s quite a relief."

The kind of brain mapping employed in this study could help scientists determine why dementias such as schizophrenia, which affects the frontal cortex, are often passed down between generations. By "building a mosaic, or jigsaw, which shows each individual part of the brain and to what extent genes influence it," Thompson says, "we can begin to point to why there’s an inherited risk to brain disease."—

JR Minkel | Scientific American
Further information:
http://www.sciam.com/news/110701/1.html

More articles from Life Sciences:

nachricht Fish recognize their prey by electric colors
13.11.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection
13.11.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection

13.11.2018 | Life Sciences

Fish recognize their prey by electric colors

13.11.2018 | Life Sciences

Ultrasound Connects

13.11.2018 | Awards Funding

VideoLinks
Science & Research
Overview of more VideoLinks >>>