Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

T cell ’brakes’ lost during human evolution

02.05.2006
A significant difference between human and chimpanzee immune cells may provide clues in the search to understand the diverse array of human immune-related diseases. Researchers at the University of California, San Diego (UCSD) School of Medicine have uncovered a a specific type of molecule expressed on non-human primate T cells, but not human T cells. T cells are important orchestrators of the immune system.

In a study to be published on-line in advance of publication in Proceedings of the National Academy of Sciences the week of May 1-5, UCSD researchers report that – unlike T cells from chimpanzees, bonobos, and gorillas (the "great apes" which are human’s closest evolutionary relatives) – human T cells lack expression of certain "Siglec" molecules. Siglecs are immune-dampening proteins that bind to sialic acids, the complex sugars found on the outside of cells. Siglec molecules seem to regulate T cell activation in chimpanzees by restricting the degree of signaling from the T cell receptor, which normally triggers the response of T cells in the immune system.

"Siglecs are like ’brakes’ that can slow down the activation of an immune cell upon stimulation," said Ajit Varki, M.D., UCSD Professor of Medicine and Cellular and Molecular Medicine and co-director of UCSD Glycobiology Research and Training Center. "During human evolution, we seem to have shut off these brakes on our T cells, allowing them to become hyper-active."

Human T cells respond much more robustly than chimpanzee cells do, a disparity that could be explained by the absence of human T cell Siglecs. The explanation for this human-specific evolutionary loss of Siglecs is currently unknown. The UCSD scientists speculate that this may have been due to a selective pressure by a microbe that once drove human ancestors to require a high level of T cell activation. Another possibility is that this phenotype was secondarily acquired, during the adjustment to the human-specific loss of the sialic acid Neu5Gc some three million years ago, and that the phenotype has been carried by all humans ever since.

The study raises warning flags about the stimulatory and potentially destructive potential of the absence of Siglec molecules in human T cells, compared to chimpanzees and other nonhuman primate counterparts.

This may explain some major differences in susceptibility to certain diseases between humans and great apes. One example is the lack of progression to AIDS in the great majority of chimpanzees infected with HIV virus. It could also account for the rarity of T-cell mediated liver damage, such as chronic active hepatitis, cirrhosis and cancer, following Hepatitis B or C infection in chimpanzees. In addition, several other common human T cell-mediated diseases, including bronchial asthma, rheumatoid arthritis and type 1 diabetes, have, so far, not been reported in chimpanzees or other great apes.

The study suggests that the expression of Siglecs on chimpanzee T cells in essence puts the brakes on the cells during chronic HIV infection, preventing progression to AIDS in chimpanzees. In contrast, the onset of human AIDS occurs more rapidly due to the loss of T cells, which are essentially "unprotected" by the regulatory Siglecs.

This study may also explain the severe human reactions observed in a recent clinical trial using a T cell activating anti-CD28 antibody produced by TeGenero, Inc. All six healthy volunteers who received doses at 500 times lower than what was tested in nonhuman primates became severely ill, requiring hospitalization.

"In retrospect, the absence of natural restrictions on activation, such as that provided by Siglecs, could have predicted this striking disparity between humans and nonhuman primates," said Varki. The human volunteers could have experienced rapid activation of T cells and a resulting "cytokine storm." The research team asked for a sample of the anti-CD28 antibody from TeGenero in order to test it on chimpanzee blood, but the company declined their request.

While this family of molecules displays a striking difference between humans and nonhuman primates, the researchers point out that there may be other undiscovered factors that also contribute to the observed differences in immune function.

As our closest evolutionary cousins, chimpanzees share more than 99% identity in typical protein sequences with humans. For that reason, the common chimpanzee has long been assumed to be an effective animal model for human diseases.

"In fact, chimpanzee diseases may be much more disparate from human diseases than previously envisioned," said Varki.

"The good news is that the loss of this brake system is not permanent, as we still have the Siglec genes in our genomes, and do continue to express them in other blood cell types," said Varki. "It is reasonable to hope that drugs can be found to turn the Siglec brakes back on again in human T cells, to slow the T cells down when they become hyper-active and cause disease."

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>