Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neurons, smarter than believed

27.04.2006
The neurons in the central nervous system (CNS) are reported to have a previously unknown ability to regulate the immune system and suppress inflammatory conditions of the CNS.

This was published by scientists at Lund University in Sweden in an article in the journal of Nature Medicine. This pioneering discovery paves the way for future therapeutic targets for inflammatory and degenerative diseases of CNS like multiple sclerosis (MS), Alzheimer’s, and Parkinson’s.

It is generally known that motor neurons regulate basic functions like movement, learning, and memory. But Swedish scientists are now able to show that the neurons are also capable of combating CNS inflammation.

The role of neurons in the regulation of immune response in the CNS has been neglected as brain and spinal cord are well protected against immune cells surveillance by a tight barrier and because neurons do not express molecules known to be involved in immune response.

"Now, we show that motor neurons are capable of actively regulating immune response and indeed they have a central role in prevention of CNS inflammation", says Associate Professor Shohreh Issazadeh-Navikas at Lund University.

In this report, Swedish scientists have demonstrated that neurons can transmit signals to harmful T cells (a type of white blood cells important for immune defense) in the brain. These signals cause these T cells to alter their function, transforming them from harmful to benign T cells that counteract inflammation and neuronal cell death.

Pathogenic T cells can enter the CNS because of several reasons such as during viral infection of CNS, as a result of mechanical damage to CNS or inflammatory diseases of CNS or autoimmune reactions, for example in case of MS (an inflammatory disease of CNS believed to be caused by autoimmune T cells). Inflammation is now implicated to be involved also in other neurodegenerative diseases such as Alzheimer’s and Parkinson’s.

The impetus for this research work came from previous observations made by Shohreh Issazadeh-Navikas at the Karolinska Institute and at Harvard Medical School. There she found in different experimental conditions that neurons appeared to be able to secrete certain immunological proteins that could have potential to combat inflammations.

"These observations indicated that neurons could actually play a role in the regulation of the immune cells causing CNS inflammation. This was a new concept that had virtually been unexplored, since it was believed that neurons were mainly targets of inflammatory attack rather than active player in its regulation."

Dedicated work by a research team under supervision of Shohreh Issazadeh-Navikas at Lund University in collaboration with Dr. Bryndis Birnir resulted in the current pioneering publication in the Nature Medicine.

According to Shohreh Issazadeh-Navikas, their findings provide new knowledge about how chronic inflammation of the brain is regulated, and it could have implications for novel therapeutic approaches of inflammatory and neurodegenerative diseases such as Alzheimer, Parkinson and MS.

Ingela Björck | alfa
Further information:
http://www.lu.se

More articles from Life Sciences:

nachricht During HIV infection, antibody can block B cells from fighting pathogens
14.08.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>