Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel stem cell technology develops a new cell for repairing spinal cord injuries

27.04.2006
Researchers have identified a new way to promote recovery after spinal cord injury with an advance in stem-cell technology. A study conducted by members of the New York State Center of Research Excellence in Spinal Cord Injury and published today in the open access journal Journal of Biology reveals that rats recover from spinal cord injury following transplantation with immature support cells of the central nervous system generated from stem cells.

Transplanting immature support cells called astrocytes, which were first generated in tissue culture from stem cell-like cells called glial restricted precursors, resulted in much better outcomes for spinal cord repair than just transplanting stem cells alone. This result challenges current ideas of how to use stem cells to promote tissue repair.

The research team led by Stephen Davies from Baylor College of Medicine, Houston, USA and colleagues from the University of Rochester Medical Center, New York, USA took embryonic glial precursor cells and induced them to differentiate in culture into a specific type of embryonic astrocyte known to be highly supportive of nerve fibre growth. They hoped these cells would have the repair capabilities of the embryonic spinal cord, which is lost in adults. Davies et al. transplanted these cells into cuts in the spinal cord of adult rats and measured the growth of nerve fibres by labelling them with a dye. They then compared healing and recovery in these rats with the recovery in spinal cord injured rats that received either undifferentiated glial precursor cells or no treatment at all.

Davies et al.’s results show that transplants of the precursor-derived astrocytes promoted the rapid growth of 40% of sensory nerve fibres across the cuts. The transplanted cells also suppressed the formation of scar tissue and aligned damaged tissue at the injury site. Furthermore, neurons in the brain that normally degenerate if their nerve fibres are severed in the spinal cord, were rescued when their cut nerve fibres interacted with the astrocytes transplanted into spinal cord injuries. In contrast, transplanted precursor cells failed to suppress scar formation or promote the growth of any nerve fibres across the injury site. Importantly, in a sensitive test of limb placement during walking, rats that received the astrocyte transplants recovered and were able to walk normally within two weeks, whereas the other rats that received undifferentiated precursor cells did not recover at all and still had difficulties with walking four weeks after the surgery.

These studies make important advances in both stem cell technology and identification of the right cell types for repairing the injured adult nervous system.

Juliette Savin | alfa
Further information:
http://www.biomedcentral.com

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>