Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Invasive species harms native hardwoods by killing soil fungus

26.04.2006
Find is first to identify specific mechanism by which invasive plants harm native species

An invasive weed that has spread across much of the U.S. harms native maples, ashes, and other hardwood trees by releasing chemicals harmful to a soil fungus the trees depend on for growth and survival, scientists report this week in the Public Library of Science. The tree-stifling alien, garlic mustard (Alliaria petiolata), first introduced into the U.S. in the 1860s, has since spread to Canada and 30 states in the East and Midwest, with recent sightings as far west as Oregon.

While many mechanisms -- from the absence of natural predators or parasites to the disruption of long-established interactions among native organisms -- have been proposed to explain the success of invasive species, this new work is the first to show that an invasive plant harms native plants by thwarting the biological "friends" upon which they depend for growth. The work, which provides striking evidence for a unique process by which invaders harm native species, was conducted by researchers at Harvard University, the University of Guelph, the University of Montana, Purdue University, and the UFZ Centre for Environmental Research in Germany.

"While vanishing habitat caused by human activity is the number one threat to biodiversity, there is great concern over the impact of accidental and intentional dispersal of alien invasive species across the globe," says Kristina A. Stinson, a plant population biologist at the Harvard Forest, Harvard’s ecology and conservation center in Petersham, Mass. "In North America, thousands of nonnative plants and animals have become established since European settlement and many more continue to be introduced. Some alien species cause little harm, while others can become very aggressive and radically transfigure their new habitat.

"The mechanisms for this phenomenon and its potential long term impacts remain poorly understood," Stinson adds, "but one possibility is that invasive species may disrupt fragile ecological relationships that evolved over millions of years."

Stinson and her colleagues found that garlic mustard targets arbuscular mycorrhizal fungi (AMF), which form mutually beneficial relationships with many forest trees. These fungi have long filaments that penetrate the roots of plants, forming an intricate interwoven network that effectively extends the plant’s root system. AMF depend on plants for energy and plants depend on the fungi for nutrients. When tree seedlings, which depend strongly on AMF, began to decline in the presence of garlic mustard, the researchers suspected that the invasive plant might thwart this symbiotic relationship.

To test this possibility, they collected soil from five forests in Ontario dominated by four species of native hardwoods. First, the researchers tested seedlings’ ability to form mycorrhizal relationships in soil with a history of garlic mustard invasion. Three species -- sugar maple, red maple, and white ash -- had significantly less AMF root colonization and grew only about one-tenth as fast in the infested soil. Seedlings grown in sterilized, AMF-free soil taken from invaded and pest-free locations showed similar reductions, suggesting that diminished microbial activity had suppressed tree growth. Other experiments showed that adding garlic mustard extracts to soil impaired AMF colonization and seedling growth, implying that the weed uses phytochemical poisons to disrupt native plants’ mycorrhizal associations and stunt their growth.

When the study was subsequently replicated with seedlings of 16 other native plants, only the hardwoods and other woody plants were harmed by the presence of garlic mustard.

"This suggests garlic mustard invades the understory of mature forests by poisoning the allies of its main competitors," Stinson says. "By killing off native soil fungi, the appearance of this weed in an intact forest could stifle the next generation of dominant canopy trees. It could also invite other native and nonnative weedy plants that currently grow in low-AMF habitats, such as those disturbed by logging or development."

The researchers plan to study which phytochemicals in garlic mustard may kill AMF, how these chemicals interact with other beneficial soil microbes, and how plants and fungi in garlic mustard’s native European habitat coexist with the noxious species.

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>