Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Duck bill and echidna – are they our ancestors or relatives?

25.04.2006
People, as they belong to the mammals, should be particularly interested in the problem of origin of this class in the animal kingdom that has conquered the entire world through evolution: not only the land, but, partly the ocean and the air.

We have already known our ancient ancestors for long – these are medium-sized animals - eutherapsida (which means “real Synapsida”), they appeared at the end of the palaeozoic, approximately 270 million years ago, and continued to develop in the Age of Reptiles – the era of huge dinosaurs’ predominance. Ultimately, dinosaurs became extinct, and eutherapsida, gradually changing, turned into mammals.

However, there are blank spots on this long way, and far from all of its stages are clear once and for all. Thus, investigations by Mikhail Ivakhnenko, Doctor of Biology (Paleontological Institute, Russian Academy of Sciences), make researchers review relations between contemporary mammals and the duck bill and echidna of Australia and the New Guinea long-nosed echidna (Zaglossus). These strangely looking animals belonging to the ovipositor subclass are considered to be primitive mammals (they are also called Prototheria – “primitive animals”).

It is assumed that formerly in the Age of Mammals, they gave rise to contemporary mammals and remained till nowadays. “However, frankly speaking, they are not resembling ordinary mammals that much, says M.F. Ivakhnenko. But, on the other hand, contemporary investigations have revealed suspicious similarity between them and other extinct group of animals – eotherapcida (“ancient Synapsida”). This similarity is particularly connected with specific construction of their auditory apparatus. It looks as if eutherapcida gave origin to only marsupial and placental mammals, and the duck bill, echidna and New Guinea long-nosed echidna (Zaglossus) - are not our ancestors but the top of other branch of evolutionary tree.”

“Ancient Synapsida” had appeared much earlier than “real Synapsida” did, approximately 320 million years ago, and, as paleontologists have proved, the former cannot be the ancestors of the latter. They have a common ancestor group but their ways diverged at once. The two of them differ fundamentally in the cranium structure, or more precisely, they adapted differently the cranial cavities inherited by them from the Crossopterygii fish. “Ancient Synapsida” occupied these cavities with the jaw muscular system – and acquired strong jaws which were certainly useful. But the other way followed by “real Synapsida” turned out to be even more useful and promising. Due to these cavities they extended the cranium and enlarged the size of brain. The difference is really a fundamental one: one got jars, the other – brain.

All the Synapsida acquired hairy “fur coat” (in contrast to reptiles, which protected the body from drying up by scales), the coat preserved moisture and turned out to be useful in the cold spell conditions. By the end of the palaeozoic, they dominated among land quadrupedals and were extremely diverse: some were of a mouse size, gigantic herbivorous – of a rhinoceros size, and predators - of a tiger size. Their reign lasted for more than 150 million years. At the boundary between the palaeozoic and the Age of Reptiles a catastrophe took place, the reasons for which are still being debated by researchers. The diverse paleozoic world disappeared and the dinosaur era began.

It was assumed for a long time that “ancient Synapsida” – eotherapsida, had disappeared completely. But there emerged a new hypothesis. They did not disappear but reached to our time in the form of duck-bills and echidnas, which in that way are not our ancestors, but first cousins.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Life Sciences:

nachricht New way to look at cell membranes could change the way we study disease
19.11.2018 | University of Oxford

nachricht Controlling organ growth with light
19.11.2018 | European Molecular Biology Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

New materials: Growing polymer pelts

19.11.2018 | Materials Sciences

Earthquake researchers finalists for supercomputing prize

19.11.2018 | Information Technology

Controlling organ growth with light

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>