Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop new concept with potential to help predict how individuals may respond to drugs

20.04.2006
Scientists from Imperial College London and Pfizer have developed a new method that could predict individual patient responses to drug treatments. The authors anticipate that the development will advance biomedical research further towards development of personalised medicines.

Research published today in Nature demonstrates the new ‘pharmaco-metabonomic’ approach that uses a combination of advanced chemical analysis and mathematical modelling to predict drug-induced responses in individual patients. The method is based on analysis of the body’s normal metabolic products, metabolites, and metabolite patterns that are characteristic of the individual. The authors hypothesize that these individual patterns can be used to diagnose diseases, predict an individual’s future illnesses, and their responses to treatments.

Not all drugs are effective in all patients and in rare cases adverse drug reactions can occur in susceptible individuals. To address this, researchers from Imperial College and Pfizer have been exploring new methods for profiling individuals prior to drug therapy. The new approach, if successful, requires the analysis of the metabolite profiles of an individual from a urine, or other biofluid, sample.

The researchers tested their approach by administering paracetamol to rats and measuring how it affected their livers and how it was excreted. Before giving the dose they measured the levels of the natural metabolites in the rats’ urine. Metabolites being small molecules produced by normal body functions, they can indicate a body’s drug response. After creating a ‘pre-dose urinary profile’ for each rat, the researchers used computer modelling to relate the nature of the pre-dose metabolite profile to the nature of the post-dose response.

Professor Jeremy Nicholson, from Imperial College London, who led the research, says: “This new technique is potentially of huge importance to the future of healthcare and the pharmaceutical industry. The ‘pharmaco-metabonomic’ approach is able to account for genetic as well as many environmental factors, and other important contributors to individual health such as the gut microfloral activity. These factors strongly influence how an individual absorbs and processes a drug and also influence their individual metabolism, making this new approach the first step towards the development of more personalised healthcare for large numbers of patients.”

The discovery of this new technology for predicting responses to drugs, which is not limited to individual genetic differences, will hopefully be a key component in the pharmaceutical industry’s aim to understand how patients might benefit from more individualised therapies. The new method is expected to be synergistic with existing pharmacogenomic approaches.

The new methodology is in early stage of development and will be studied in humans to evaluate its possible clinical application. The researchers hope this new technique might one day allow doctors to personalise drug treatments for some individuals, providing physicians with the ability to prescribe medicines that will be most effective for certain patient groups, and at a tailored dose-range for maximum efficacy and safety.

Tony Stephenson | alfa
Further information:
http://www.imperial.ac.uk

More articles from Life Sciences:

nachricht Progress in Super-Resolution Microscopy
17.12.2018 | Julius-Maximilians-Universität Würzburg

nachricht Communication between neural networks
17.12.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

When a fish becomes fluid

17.12.2018 | Studies and Analyses

Progress in Super-Resolution Microscopy

17.12.2018 | Life Sciences

How electric heating could save CO2 emissions

17.12.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>