Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

For some young fish, early gene expression is a clear harbinger of fated lifestyle

18.04.2006
Large swaths of the genome are controlled by the choice of a sedentary versus migratory future

As juveniles, individuals of many fish species face a developmental choice that will profoundly affect their future: whether to adopt a sedentary or migratory lifestyle. Sedentary (or "residential") individuals remain in the region of their birth, while their migratory compatriots set forth on long open-water journeys. The developmental choice of the residential versus migratory "life history" is known to be influenced by environmental factors, but is not well understood at the genetic level. Researchers now report that fish that are very closely related genetically show dramatically different patterns of actual gene expression if they have adopted different lifestyle fates. Moreover, and perhaps more surprisingly, less-related individuals from geographically different populations nonetheless exhibit very similar patterns of gene expression if they have adopted the same fate--residential or migratory. Thus, the researchers found that levels of expression of a great many genes depend primarily on an individual’s future lifestyle.

The findings, which illuminate how programs of gene expression have evolved to control profoundly different developmental outcomes, are reported in the April 18th issue of Current Biology by Drs. Thomas Giger, Carlo Largiadèr, and Laurent Excoffier of the University of Bern, along with colleagues from France, Ireland, Denmark, and the UK.

Salmonid fish, which include trout and whitefish as well as salmon, show exceptional levels of life-history variation--that is, residential and migratory types often co-occur within a single population of young fish. Before reaching sexual maturity and leaving their natal stream, migratory individuals undergo dramatic morphological, physiological, and behavioral changes that prepare them for adulthood in open fresh and salty waters.

In their innovative work, which is based on studying the gene expression profiles of hundreds of genes at a time in different fish populations, the researchers studied gene expression in two species--strains of the brown trout, Salmo trutta, and a strain of the Atlantic salmon, Salmo salar. The researchers showed that many genes of genetically similar sedentary and migrant populations living in the same river were expressed at different levels. At the same time, two sedentary brown trout populations from Denmark and France, despite having diverged half a million years ago, showed very similar gene expression profiles. This remarkable similarity in gene expression between populations sharing the same life history--but being genetically very divergent and occupying different habitats--suggests that the genetic program of a given life history has been a highly selected attribute during the evolution of brown trout populations.

The findings also indicate that such striking differences in gene expression profiles are probably controlled by only a few major genes.

In addition, the authors showed that while there is a large diversity in gene expression levels between individuals from the same population, the different expression profiles associated with lifestyle fates were so distinct that by measuring the expression levels of relevant genes, it was possible to predict the future lifestyle of fish at the juvenile stage.

Heidi Hardman | EurekAlert!
Further information:
http://www.current-biology.com

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>