Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Movement of chromosome in nucleus visualized

18.04.2006
The cell is understood to be highly organized, with specialized areas for different functions and molecular motors shuttling components around. Researchers from the University of Illinois’ Chicago and Urbana-Champaign campuses now offer the first imaging evidence from live cells of ongoing organization and transport within the cell nucleus.

Genes that are active are located mainly in the central region of the nucleus, while inactive genes are at the periphery. But scientists have had no way to track chromosome movement inside the nucleus or to determine whether the location of the chromosomes was the result of random diffusion or if they are moved around by molecular motors.

In a study published in the April 17 issue of Current Biology, UIC and UIUC researchers show that chromosomes in the cell nucleus are capable of directed, long-range movement that depends on actin and myosin, the major molecular motor complex in the cytoplasm.

Developing a system for observing nuclear motion was difficult because chromosome movement is extremely light-sensitive. One exposure to light, and the chromosome would not move, even though the cell appeared undamaged. After extensive experimentation, researchers at UIUC developed a method that allowed them to take pictures without killing the movement.

Using this system, UIUC graduate student Chien-Hui Chuang studied a chromosome that is normally found in an inactive state near the nuclear periphery and moves to the interior of the nucleus when it receives an activating signal.

"The movement following activation was radically different from the rapid, but short-range, diffuse movement previously observed in these nuclei," said Dr. Andrew Belmont, professor of cell and developmental biology at UIUC, principle investigator and co-author of the study. It was clear that this was directed movement that required a motor, Belmont said, because the chromosome was moving in a nearly straight line perpendicular to the nuclear envelope. The chromosome traveled further in several minutes than ever observed, even over several hours, in the absence of activation.

"It looked nothing like the random, but localized, bouncing around that had been previously observed," he said.

Belmont’s group collaborated with Primal de Lanerolle, professor of physiology and biophysics at UIC, who had discovered a type of myosin in the nucleus. Most myosin molecules are found in the cytoplasm, where they interact with actin filaments to do physical work. Because these molecules can contract muscles or move things around, they are called molecular motors. de Lanerolle and his colleagues were able to offer the Belmont laboratory a number of ways to test whether the chromosome movement was actin/myosin-dependent.

When the researchers introduced a mutant form of myosin protein to the nucleus, the movement slowed. Introducing a mutant actin that does not form filaments stopped the movement, while the introduction of an actin mutant that enhances filament formation accelerated the movement. In addition, when a drug that inhibits actin/myosin interactions was added to the cells, the chromosome movement was stopped completely. These experiments conclusively established that actin and myosin are involved in this chromosome movement.

"While we have known for a long time that actin is present in the nucleus and we had shown that myosin is also present in the nucleus, nobody really knew if they worked together," said de Lanerolle.

"There has been tantalizing evidence of organization in the nucleus--active genes found in the central region associated with nucleus complexes of transcription machinery necessary for gene expression, while inactive genes are found at the periphery," Belmont said. "For the first time, we have been able to observe an active mechanism for directed long-range chromosome movements that depend directly or indirectly on actin and myosin."

Other authors include graduate students Anne Carpenter at UIUC, currently at a post-doctoral fellow at M.I.T., and Beata Fuchsova and Terezina Johnson at UIC.

Jeanne Galatzer-Levy | EurekAlert!
Further information:
http://www.uic.edu

More articles from Life Sciences:

nachricht Progress in Super-Resolution Microscopy
17.12.2018 | Julius-Maximilians-Universität Würzburg

nachricht Communication between neural networks
17.12.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

When a fish becomes fluid

17.12.2018 | Studies and Analyses

Progress in Super-Resolution Microscopy

17.12.2018 | Life Sciences

How electric heating could save CO2 emissions

17.12.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>