Altering genetic blueprint of receptors in brain could help stroke victims avoid brain damage

A University of Central Florida researcher has discovered that altering a receptor that mediates communication between nerve cells in the brain significantly improves animals’ chances of surviving strokes and allows them to remain healthier afterwards.

YouMing Lu, a professor at the UCF Burnett College of Biomedical Sciences, is hopeful that changing the genetic blueprint of AMPA receptors can help to block lethal flows of calcium into neurons of human stroke victims.

If administered within a few hours of cardiac arrest, such therapies could prevent brain damage. Given later, the therapies could speed up the regeneration of neurons to replace ones killed by the stroke. In both cases, the primary goal is to help patients avoid brain injuries after strokes.

AMPA receptors that are located at the surface of nerve cells are normally responsible for learning and memory formation. During strokes, however, the receptors become toxic to nerve cells.

“We’re trying to find out what the major toxic aspects of these receptors are so we can rescue neurons without damaging learning and memory formation,” Lu said.

Lu’s research was published in the March 2 issue of Neuron, a prestigious biomedical research journal. Lu and his research team at UCF and the University of Calgary are trying to determine the molecular functions that lead to receptors opening up and enabling large, lethal flows of calcium to reach neurons after strokes.

The calcium flows occur in the hippocampus of the brain, an area that is critical for learning and memory processes. The dilemma for researchers is to figure out how to protect neurons from the lethal doses of calcium without causing more damage to learning and memory.

Lu’s approach of modifying one part of the genetic blueprint of the AMPA receptor protected the brain in tests with mice and rats, which experience the same pattern of brain damage after cardiac arrest as humans do, Lu said. More tests in animals would be done before clinical trials are conducted.

Lu conducted his research with funds from the American Heart Association, plus other grants from the UCF presidential equipment fund, the Heart and Stroke Foundation of Canada and the Canadian Institute for Health Research. Lu’s research has potential future applications for Alzheimer’s disease and other neurological illnesses. Drug therapies for those diseases also could improve learning and memory by inducing the regeneration of neurons.

Lu began his research about six years ago at the University of Calgary. He moved to the University of Central Florida 1 1/2 years ago, when the university began hiring more faculty members in the Burnett College of Biomedical Sciences to develop a foundation for a new medical college at UCF.

Media Contact

Chad Binette EurekAlert!

More Information:

http://www.ucf.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors