Towards a unified model of transcription termination

The allosteric, or antiterminator, model proposes that transcription of the poly(A) site triggers conformational changes that destabilize the elongating RNA polymerase, resulting in termination. The torpedo model proposes that an exonuclease degrades the nascent RNA, and eventually catches up to the elongation complex, causing its termination.

Using a novel experimental system to study the function of the exonuclease Rat1 in yeast, Dr. Bentley’s team now shows that while the exonucleases Rat1 and Xrn1 do degrade the nascent RNA transcript, this degradation is not sufficient to cause polymerase termination. Rather, Rat1 helps recruit cleavage and polyadenylation factors that are necessary for termination. “As is often the case with competing hypotheses like the torpedo and allosteric models for transcription termination, neither one can explain the whole story, but aspects of both are correct, and these form the basis for a unified model,” explains Dr. Bentley.

Media Contact

Heather Cosel EurekAlert!

More Information:

http://www.cshl.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors