Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A large step forward in the fight against African sleeping sickness

10.04.2006
Each year, over 300,000 people die of African sleeping sickness (trypanosomiasis).
Researchers from the Flanders Interuniversity Institute for Biotechnology (VIB) connected to the Free University of Brussels are making strides in the battle against this disease. They have coupled the human protein ApoL-1 with a nanobody in order to very specifically eliminate the infection caused by the pathogenic parasites, against which our defense mechanism is powerless. Tests on mice are already promising. The recently published research results offer new possibilities for people who have contracted this disease.

African sleeping sickness

About 400,000 people worldwide suffer from the deadly African sleeping sickness. The disease produces severe sleep disorders that ultimately end in coma, followed by death. At present, fewer than 10% of the patients are treated in time. But on the other hand, the current treatment is also very toxic, and in many cases also results in the patient’s death.

African sleeping sickness is a disorder caused by the trypanosome parasite. The blood-sucking tsetse fly transmits the parasite from person to person. Once someone has been infected by the parasite, the person’s body has great difficulty getting the infection under control, because the parasite constantly changes appearance. Thus, the trypanosome remains impervious to the antibodies that the body produces.

Parasite eludes human defense mechanism

Fortunately, our body has a special defense mechanism that can help us in the fight against African trypanosomes. Our blood contains ApoL-1, which is toxic to - and neutralizes - most types of trypanosomes.

However, there is one trypanosome against which we are not protected: Trypanosoma brucei rhodesiense. This parasite is resistant to ApoL-1, because it has particular proteins that counteract ApoL-1’s action.

For some time now, scientists have known that a variant of ApoL-1 is not neutralized by Trypanosoma brucei rhodesiense. This truncated ApoL-1 variant can help to overcome the parasite that infects our body, but only when it is present in very high concentrations. The challenge for the researchers was to get this truncated ApoL-1 variant efficiently to the place where it is needed: onto the surface of the parasite.

Nanobody carries ApoL-1 variant to the parasite

Under the direction of Serge Muyldermans and Patrick De Baetselier, VIB researchers have previously produced a nanobody (a very small antibody) that targets and binds to the parasite very specifically (Stijlemans et al., 2004). Toya Nath Baral and his VIB colleagues have now succeeded in coupling this nanobody to the abbreviated ApoL-1 variant. This creates a special product that binds immediately to the parasite and thus brings the ApoL-1 variant to the place where it can carry out its neutralizing action.

All the tests performed on mice have been very promising: Trypanosome-infected mice survive after 1 treatment. The parasite is removed from the blood and all effects associated with the disease disappear. There is every indication that this substance can also counteract Trypanosoma brucei rhodesiense in humans - sparing them from African sleeping sickness.

Given that this research can raise a lot of questions for patients, we ask you to please refer questions in your report or article to the email address that VIB makes available for this purpose: patienteninfo@vib.be. Everyone can submit questions concerning this and other medically-oriented research directly to VIB via this address.

This research was accomplished through an intense collaboration between VIB and the Free University of Brussels (VUB and ULB).

Joke Comijn | alfa
Further information:
http://www.vib.be

More articles from Life Sciences:

nachricht During HIV infection, antibody can block B cells from fighting pathogens
14.08.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>