Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hepatitis C therapy: Inhibiting newly discovered microDNA molecule

06.04.2006
Reduces virus RNA abundance

Last fall Dr. Peter Sarnow and a team of Stanford University scientists reported that the hepatitis C virus needs a specific microRNA, named miR-122, in order to replicate in cultured liver cells. When the scientists inactivated the microRNA, the amount of hepatitis C virus RNA was reduced by approximately 80 percent. The discovery was widely heralded for its potential to develop new antiviral agents against hepatitis C, the most common blood-borne viral infection in the United States, affecting more than 2.5 million Americans and a staggering 170 million people worldwide. The best treatment regimens now available are difficult, expensive, laden with serious side effects and effective in only half the cases.

Dr. Sarnow discusses the most recent findings in this work on April 5 at Experimental Biology 2006 in San Francisco. His presentation is part of the scientific program of the American Society for Biochemistry and Molecular Biology.

MicroRNAs, or miRNAs for short, are small RNA molecules that regulate genes in many plant and animal species. Although miRNAs were not discovered until the mid-1990, a growing number of studies suggest that over 300 human genes encode microRNAs and that these microRNAs may control gene expression for as much as a third of the human genome, acting as key regulators of processes as diverse as early development, cell proliferation and cell death, and cell differentiation. Some miRNAs are located throughout the body, while others are found only in specific tissue. The miRNA whose surprising new role was discovered by Dr. Sarnow and his colleagues is located only in the liver. The Sarnow team found that miR-122 binds to a specific noncoding binding region in virus, called target 5’ NCR. This is the first example of an animal RNA that interacts with its target 5’ NCR, and opens an interesting possibility that other viral 5’ NCRs are similarly targeted by different miRNAs.

Sarah Goodwin | EurekAlert!
Further information:
http://www.faseb.org

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>