Understanding the life of C. elegans

When conditions are harsher, however, the worm – a classic model organism frequently studied in the laboratory – does not produce the hormone and enters a special stage called the dauer diapause in which it remains an immature larva until the situation improves. In a paper that appears in the journal Developmental Cell, Baylor College of Medicine researchers led by Dr. Adam Antebi, assistant professor in the BCM Huffington Center on Aging and the department of molecular and cellular biology, identify a new gene called DAF-36 involved in making this hormone.

“Our evidence suggests that DAF-36 works early in a pathway that converts cholesterol through a series of enzymatic steps into the dafachronic acids, the active ligands for DAF-12 nuclear receptor,” said Antebi. In this instance, a ligand is a molecule that binds to a specific site on a protein.

These particular ligands promote the maturation of the C. elegans reproductive capacity and prevent the organism from going into the immature long-lived larval phase called dauer diapause. Antebi and collaborators identified these ligands in a report that appeared March 24, 2006 in the journal Cell.

In addition, said Antebi, DAF-36 is required for the long life seen in forms of C. elegans that lack germline cells – those cells – like sperm and egg in animals – are necessary for reproduction.

In a related work published in Cell (Motola et al. 2006), the chemical identification of the DAF-12 ligands as steroid-like hormones is reported, providing the first evidence for steroid control of maturation in worms. Antebi speculates that this may resemble how estrogen and androgen hormones similarly govern human maturation.

Media Contact

Kimberlee Barbour EurekAlert!

More Information:

http://www.bcm.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors