Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One gene provides fruit fly both antenna and color vision

06.04.2006
Brilliant reception

A team of researchers that includes biologists from Washington University in St. Louis has discovered that a gene involved in the development and function of the fruit fly antenna also gives the organism its color vision.


Pretty fly - for a fruit fly. The areas stained blue are regions in the fruit fly where the spineless gene is expressed. WUSTL biologists Ian and Dianne Duncan have spent years making discoveries of how the gene is involved in making the fruit fly antenna. Now they are part of a team that has found that spineless plays a key role in the organism’s color vision.

Claude Desplan, Ph.D., professor of biology at New York University, and his students made the discovery and provided the data. Ian Duncan, Washington University professor of biology, and his wife, research assistant Dianne Duncan, provided the Desplan laboratory fruit fly (Drosophila) clones and mutants and technical assistance that helped locate where the gene, called spineless, is expressed in the retina.

The Duncans have a long history with the spineless gene. Their interest has been in the role spineless plays in directing development of the antenna, Drosophila’s primary olfactory organ. Years ago, they deleted the spineless gene and found that the mutants then produced a leg instead of an antenna.

"Spineless plays a key role in the antenna and maxillary palp, the two major olfactory organs of the fly," said Ian Duncan. "It’s also important in mechanosensory bristles and in the taste receptors of the legs, wings, and mouth parts. There has been a sensory theme to the gene, and now we learn from Claude’s work that it plays a key role in color vision."

In humans the closest known homolog (counterpart) is the arylhydrocarbon (’dioxin’) receptor, a key protein in human health that senses a wide variety of synthetic compounds and then activates expression of detoxification genes. The dioxin receptor is studied closely in cancer biology and toxicology.

Recently, the Duncans had found a relationship between spineless and a gene called homothorax. Desplan’s group had shown that homothorax plays an important role in the Drosophila eye, and after hearing Ian Duncan make a presentation on the homothorax-spineless relationship in the antenna, the Desplan laboratory decided to study spineless in the eye.

The collaborators published their results in the March 9, 2006 issue of Nature.

Random pattern

The Drosophila retina is comprised of clusters of photosensitive cells called ommatidia. Two types of ommatidia are present: one is sensitive to long-wave light and the other to short-wave light. This difference is due to the expression of different light-sensitive pigments (rhodopsins) in the two central photoreceptor cells (R7 and R8) of each ommatidial cluster. Spineless determines the long-wave type by activating expression of rhodopsin-4 in R7 cells. In ommatidia where spineless is not expressed, R7 expresses the short-wave sensitive rhodopsin-3.

"The fascinating thing in this work is that the longer wave length sensitive ommatidia are randomly positioned," said Duncan. "About 70 percent of the ommatidia sense longer wavelength and 30 percent sense short-wave length. It’s been a mystery how you generate a random pattern like that and still have that ratio."

Using the tools that the Duncan laboratory provided, Desplan’s group mapped the regulatory region in the spineless gene that drives the random pattern mechanism.

"Nobody knew what controlled this random pattern," said Dianne Duncan. "Now we know it’s spineless. We’ve known for a while that spineless has several sensory functions and we thought it might be a bit underrated in developmental biology. Now we add color vision to its duties."

Spineless also appears to control communication between the R7 and R8 photoreceptors. "It has been known for some time that the expression of rhodopsin genes in R7 and R8 is coupled with the particular genes expressed in R8 being determined by the adjacent R7 cells," said Ian Duncan.

"An additional important finding in the paper is that spineless controls this signaling between R7 and R8."

Link to human odor perception

The Duncans will continue to look for other genes that spineless controls in making an antenna. They have shown that spineless acts together with two other factors, Homothorax and Distalless, and identified downstream target genes by virtue of their having clustered binding sites for these factors. And they are looking into similarities between spineless and the mammalian dioxin receptor. In a collaboration with a University of Wisconsin researcher, they have put the mammalian dioxin receptor gene into Drosophila, where, surprisingly, it specifies the making of an antenna.

"When you think about it, the antenna is quite special," Dianne Duncan said. "It contains many proteins not expressed anywhere else in the fly. These include many odor receptor proteins that are expressed in subsets of cells within the antenna. Our hope is that by unraveling how development of the Drosophila antenna is controlled, we will gain important insights into how human odor perception works."

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Colorectal cancer risk factors decrypted
13.07.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht Algae Have Land Genes
13.07.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>