Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Another gene rearrangement involved in prostate cancer identified

05.04.2006
Researchers at the University of Michigan Medical School have identified a third gene involved in prostate cancer, expanding their groundbreaking announcement, published last October in Science, that the majority of prostate cancers carry a malignancy-inducing fusion of genes never before seen in solid tumors.

The new findings appear in the April 1 issue of Cancer Research. Since prostate cancer is a cancer of the epithelial cells lining organs, lead researcher Arul Chinnaiyan and his colleagues believe it likely that other gene re-arrangements may be responsible for other cancers of epithelial tissue, including breast, colon and lung.

Scott Tomlins, a MD/PhD graduate student in Dr. Chinnaiyan’s laboratory and the lead author of the Science paper, presented the study Tuesday, April 4, at Experimental Biology 2006 in San Francisco. The presentation was part of the scientific program of the American Society for Investigative Pathology (ASIP) held at Experimental Biology, and Mr. Tomlins is the winner of the 2006 ASIP Experimental Pathologist-in-Training Award.

The ETV4 gene is a member of the same family as the two other genes, ETV1 and ERG, reported earlier. All three are ETS genes, a group of approximately 30 genes that encode related transcription factors. Like other family members, ETV4 has a role in normal cell division but is unusually active, or overly expressive, only when it becomes fused with other genes on different chromosomes. Using the same technology as the earlier study, the scientists were able to demonstrate that the ETV4 gene had become fused with another prostate cancer gene on another chromosome.

But the new ETV4 gene has two important differences from the ETV1 and ERG genes. First, while not overexpressed in individuals without prostate cancer, ETV4 is overexpressed in a much smaller fraction of patients with prostate cancer than the malignancy-causing genes described earlier. Second, the over-expressed ETV4 gene appeared in two prostate cancer patients in whom the ETV1 and ERG genes were not overexpressed, suggesting that fusions involving any of the three family members may lead to prostate cancer.

This finding confirms the importance of the ETS gene pathway in causing prostate cancer, say Chinnaiyan and Tomlins. The scientists believe fusions involving these three genes probably account for the majority of prostate cancers.

Citing the power of modern technology, including large gene databases (this study mined the Oncomine database, created by the Chinnaiyan laboratory, for ETS expression in two studies, one from the Chinnaiyan laboratory and the other from Stanford University), bioinformatics approaches that allow the rapid processing of previously unimaginable amounts of information, and an algorithm also created in the Chinnaiyan laboratory, the scientists will continue to look at other components of the ETS pathway, including genes that may get turned on inappropriately but may not be able to be detected through over-expression. Dr. Chinnaiyan also has plans to look for similar gene rearrangements in other solid tumors such as breast cancer.

Sylvia Wrobel | EurekAlert!
Further information:
http://www.faseb.org/

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>