Researches Discover Gene Critical for Protection Against Septic-Shock-Induced Death

Disruption of a single gene, Nrf2, plays a critical role in regulating the body’s innate immune response to sepsis and septic shock, according to a study by a research team led by Shyam Biswal, PhD, at the Johns Hopkins Bloomberg School of Public Health. The researchers found that the absence of Nrf2 caused a dramatic increase in mortality due to septic shock in mice. The study’s findings, which will be published in the April 2006 issue of the Journal of Clinical Investigation, may hold potential for the treatment of life-threatening sepsis.

Sepsis is a complex disease characterized by an increased inflammatory response in the body’s attempt to combat an infection from microorganisms such as bacteria, fungi or viruses. A weak host inflammatory response can lead to greater infection, whereas an excessive inflammatory response may lead to tissue damage, myocardial injury, acute respiratory failure, multiple organ failure or death. Controlling inflammation is thus a central focus of treating sepsis. Researchers have been hunting for novel host genes that regulate inflammation as potential targets for the next generation of sepsis therapies. The incidence of sepsis in the United States ranges from 400,000 to 750,000 cases per year. Mortality due to sepsis is around 30 percent and increases with age from 10 percent in children to 40 percent in the elderly. Mortality is 50 percent or greater in patients with the more severe syndrome, septic shock.

Suspecting that a dysregulation in the body’s inflammatory response exacerbates sepsis, the research team began looking into the genetic factors that might contribute to this syndrome. In 2002, Biswal and his colleagues discovered that Nrf2 acts as a primary regulator of most of the cellular antioxidant pathways and detoxifying enzymes that protect the body from a wide variety of environmental toxicants. In subsequent studies, they discovered that Nrf2 is a pleiotropic protein that regulates a broad spectrum of genes used by the host to defend against a variety of stresses, including oxidative and inflammatory diseases such as cigarette-smoke-inducedemphysema and allergic asthma in mice models.

Biswal’s team found that the deletion of the Nrf2 gene increased the inflammatory response and caused early death in mice subjected to septic peritonitis or endotoxin shock or both. Mice deficient in Nrf2 gene expressed dramatically increased levels of effector molecules (cytokines) that mediate innate immune response, the body’s first line of defense. “Sepsis syndrome is like a speeding car with a brake failure. Nrf2 may function like a brake that regulates the speed,” said Biswal, senior author of the study and assistant professor in the Bloomberg School’s Department of Environmental Health Sciences. Biswal speculates that suboptimal function of Nrf2 may be one reason why some intensive-care patients progress into severe sepsis and die.

“Nrf2 protects from septic shock by two mechanisms,” explained lead author Rajesh Thimmulappa, PhD, a postdoctoral fellow at Environmental Health Sciences, Bloomberg School of Public Health. “First, Nrf2 protects from dysregulation of host inflammatory response, which is a characteristic feature of septic shock. Secondly, Nrf2 protects from oxidative pathological damage, the main cause of multi-organ failure during septic shock. Hence, Nrf2 can be a promising therapeutic target for attenuating septic-related deaths.”

According to Biswal, the findings provide a better understanding of the human body’s defense mechanisms to sepsis and septic shock, and may provide clues to designing novel therapies that could minimize mortality. The researchers are now trying to find if activation of Nrf2 by a small-molecule drug can minimize pathological damage and improve survival during sepsis caused by bacteria or viruses. Future studies will determine the therapeutic potential of targeting Nrf2 for treatment of sepsis and other inflammatory diseases that impact public health.

The other coauthors of the study are Hannah Lee, Tirumalai Rangasamy, Sekhar P. Reddy, Masayuki Yamamoto , Thomas W. Kensler.

This work was supported by NIH grants- HL081205 (S. Biswal), P50 CA058184, NIEHS center grant P30 ES 038819, Young Clinical Scientist award from Flight Attendant Research Institute (S. Biswal), The Maryland Cigarette Restitution Fund (S. Biswal); CA94076 (T.W. Kensler) and P50 HL073994 (S.P. Reddy)”.

Media Contact

Tim Parsons EurekAlert!

More Information:

http://www.jhsph.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors