The hare and the greyhound: a race the hare can win

The hares may seem brazen in their conspicuousness, but if a stray greyhound were to take advantage of their amorous distractions the hares would stand a very good chance of getting away. This security comes from the fact that hares have better muscles for jumping and turning than greyhounds. Sarah Williams, a research student in the Structure and Motion laboratory at The Royal Veterinary College, UK, will present her work on Tuesday 4th April at the Society for Experimental Biology’s Annual Main Meeting in Canterbury [session A7].

Greyhounds and hares can both reach top speeds of 20 metres per second and change direction very easily, despite the obvious differences in size. However, there are important differences in the structure of their muscles, which is what gives the hare the advantage over its adversary: the hare’s hind-limb hip-extensor muscles are more exaggerated relative to the greyhound’s, as are its adductor muscles. “The hip-extensors are most likely used to act as the propulsors of the animal and are important for tasks such as accelerating and jumping, while the adductor muscles enable rapid changes in direction”, explains Williams.

Media Contact

Lucy Moore alfa

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors