Newly discovered testosterone action may act on prostate cancer

Testosterone has been associated with a higher rate of certain cancers. Classically, testosterone passes through the cell membrane to act inside the cell. However recent work has indicated that testosterone may also act at the cell surface, through membrane androgen binding sites called Ambs.

Now a team lead by Professors Stournaras, Castanas and Gravanis at the Medical School of the University of Crete Heraklion, Greece, has discovered that activating these cell-surface testosterone binding sites can significantly reduce the size of prostate cancer tumours in animal models.

When testosterone is bound to another protein such as BSA, it does not enter the cell, and so can only be expressed at the cell membrane, activating newly identified specific signalling pathways. The University of Crete team treated mice, which had been given prostate cancer through inoculation with LNCaP cancer cells. They found that after one month of treatment with testosterone bound to the protein BSA (Bovine Serum Albumin) there was a 60% reduction in tumour size, with no apparent side-effects.

Professor Stournaras said:

This work strongly supports the concept that testosterone-protein conjugates, which activate membrane androgen receptors may represent a new class of experimental anti-tumour agents in prostate cancer. This is a new concept, and we need to make sure that these results can be transferred to humans in a satisfactory way. But if we can develop drugs that act safely on these Ambs (androgen membrane binding sites) then we may have a completely new therapeutic option for prostate cancer.

Media Contact

Jo Thurston alfa

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors