Virginia Tech studies reveal reaction pathways for ozone on organic surfaces

The research will be presented at the 231st American Chemical Society (ACS) national meeting being held in Atlanta on March 26-30.

John Morris’ group is studying the reactions of small molecules found in pollution of surfaces. Morris, associate professor of chemistry in the College of Science, and his students are looking specifically at hydrochloric acid (HCl) and triatomic oxygen (O3, a toxic form of oxygen), pollutants known to play a major role in atmosphere chemistry. They are using functionalized self-assembled monolayers (thin films – one molecule thick) to simulate organic surfaces. “It gives us control of the surface structure and chemical functionality so we can study how those aspects of a surface influence the fate of important gas-surface collisions,” Morris said.

The experiments have led to a detailed understanding of the reaction mechanisms of HC1 and ozone on organic surfaces, which is what Morris will present in the paper authored by graduate student Larry R. Fiegland, Morris, and graduate student B. Scott Day.

A major finding is that ozone reacts with carbon-carbon double bonds to form crosslinked networks within the thin film. Carbon-carbon double bonds are the very strong forces that link carbon atoms together to help form long-chain molecules — major components of many polymeric materials found in everyday life. “The formation of crosslinked networks is a new discovery – that provides a fundamental understanding of how, on the molecular level, organic surfaces degrade with prolonged exposure to ozone, a major atmospheric pollutant,” Morris said. “Understanding the reaction mechanism may someday lead to more robust films for organic coatings, or polymeric coatings, such as paints.”

Media Contact

Susan Trulove EurekAlert!

More Information:

http://www.vt.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Machine learning algorithm reveals long-theorized glass phase in crystal

Scientists have found evidence of an elusive, glassy phase of matter that emerges when a crystal’s perfect internal pattern is disrupted. X-ray technology and machine learning converge to shed light…

Mapping plant functional diversity from space

HKU ecologists revolutionize ecosystem monitoring with novel field-satellite integration. An international team of researchers, led by Professor Jin WU from the School of Biological Sciences at The University of Hong…

Inverters with constant full load capability

…enable an increase in the performance of electric drives. Overheating components significantly limit the performance of drivetrains in electric vehicles. Inverters in particular are subject to a high thermal load,…

Partners & Sponsors