Enzyme inhibitors block replication of SARS virus

The study was conducted by researchers from Scripps Research; the Genomics Research Center, Academia Sinica, Taiwan; and the National Taiwan University. It is being published today in the journal Chemistry and Biology (Vol. 13, No. 3).

Chi-Huey Wong is currently the Ernest W. Hahn Chair in Chemistry at the Skaggs Institute of Chemical Biology and directs the Scripps Research lab heading the study. He said the new finding is an important step in developing a possible drug treatment against SARS.

“We have been working on the problem of SARS since the epidemic started in 2003,” Wong said. “This new class of inhibitors represents the most potent SARS virus protease inhibitors known today.”

The path to today’s research finding has taken several years. In 2002, Severe Acute Respiratory Syndrome (SARS) emerged in rural China and eventually spread to 32 countries, according to the World Health Organization. SARS is caused by a ring-shaped virus, known as a coronavirus. The SARS coronavirus is suspected of originating in animal populations before migrating to humans. Hardest-hit were six Asian nations. By the time the epidemic had been controlled in 2003, the disease infected more than 8,000 people, causing 800 deaths. There is no current effective treatment or vaccine.

Researchers have known since 2003 that a site on the virus is responsible for mediating proteases that allow the virus to replicate. Since then researchers have been testing protease inhibitors to lock up this site, known as SARS 3CLpro, and effectively stop the virus from infecting additional cells in the body.

In 2004, Wong’s lab discovered that Lopinavir, a protease inhibitor of HIV also known as TL3, also served as weak inhibitor of the SARS 3CLpro site (PNAS, 101, 10012-10017). Since then, members of Wong’s group further studied Lopinavir and are preparing it for clinical trials against SARS.

Researchers in Wong’s lab at Scripps Research and in Taiwan have been looking at other Liponavir-related compounds for similar blocking effects. During these experiments, they found that a group of catalyzing agents used to help promote chemical reactions in the laboratory were actually more powerful in blocking the SARS protease than either the Lopinavir or any of the target compounds.

These organic compounds are called benzotriazole esters. The esters entered the SARS protease site, formed an intermediary compound, then inactivated the SARS enzyme. The findings were confirmed using mass spectrometry analysis of the enzyme intermediary.

“These benzotriazole esters are relatively stable and act as suicide inhibitors,” Wong said. “They block the enzyme, are transformed through a co-valent bond, and are unable to get out.”

Wong said the findings published today provide better insight into the mode of action of the enzyme, which may lead to development of a drug against SARS. The findings were made by using rapid drug discovery techniques developed in the Wong lab to screen large numbers of weak enzyme inhibitors, and then attaching additional compounds to look for stronger reactions.

Research Associate Chung-Yi Wu, a member of the Wong lab, is the paper’s lead author. He said the finding was unexpected.

“We wanted to improve Liponavir activity,” Wu said. “But we found this very surprising and serendipitous result.”

Media Contact

Keith McKeown EurekAlert!

More Information:

http://www.scripps.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors