Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inducing melanoma for cancer vaccine development

28.03.2006
Cancer vaccines are being investigated in early-phase clinical trials around the world, with many of those trials recruiting patients with melanoma.

Although tumor regressions have been seen in 10% to 20% of patients with metastatic melanoma, the great promise of cancer vaccines - controlling tumor growth and cancer spread without serious side-effects - remains as yet unrealized. This could be set to change with the publication of a new mouse model technology in Cancer Research, the journal of the American Association of Cancer Research, from a multi-national team led by investigators at the Brussels Branch of the global Ludwig Institute for Cancer Research (LICR).

“Melanoma has been a focus of cancer vaccine development because many melanoma-specific vaccine targets, so-called ‘cancer antigens’, have been defined,” says the study’s senior author, LICR’s Dr. Benoit Van den Eynde. “However, we have a limited understanding of how most, but not all, melanomas evade an immune system that has been primed to detect and destroy cancer cells carrying one of these defined cancer antigens.”

According to Dr. Van den Eynde, this is due in part to the lack of appropriate animal models in which detailed immunological analyses can be performed before and after vaccination. “The models we use to investigate cancer vaccines at the preclinical level either have a defined cancer antigen in a transplanted tumor, or they have an ‘original’ tumor that doesn’t have a defined antigen. However, in human clinical studies, we have original tumors with defined antigens. So there has been a need for a mouse model that more closely follows the human model.”

Thus the Institute that first cloned mouse and human cancer antigens, allowing the rational design of cancer vaccines, has developed a model in which melanoma with a defined cancer antigen can be induced. The model has been engineered to have several mutations found to occur together in human melanoma, and so closely mimics the genetic profile of cancers treated in the clinic. The team, which is comprised of investigators from Belgium, France and The Netherlands, has already begun characterizing a cancer antigen-specific immune reaction observed before the mice were even vaccinated, which they hope will lead to a further understanding of spontaneous melanoma regressions.

Dr. Jill O’Donnell-Tormey, Executive-Director of New York’s Cancer Research Institute, which was founded in 1953 specifically to foster cancer immunology research, believes that this model may yield information crucial for cancer vaccines for other tumor types and not just melanoma. “We have clinical trials for cancer antigens for sarcoma, for melanoma, and for breast, prostate, lung and ovarian cancers. We’re learning a lot from these trials, but we could learn a lot more if we have a model like this, which selectively expresses each of our target antigens. Just one example might be the analysis of the immune response to cancer antigens during the early stages of cancer onset and progression, which might indicate if there is an optimum time for vaccination.”

Sarah White | alfa
Further information:
http://www.licr.org/C_news/archive.php/2006/03/27/inducing-melanoma-for-cancer-vaccine-development/

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Lying in a foreign language is easier

19.07.2018 | Social Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>