Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The tiniest mutation will give a detoxification enzyme a completely new function

23.03.2006
Researchers at Uppsala University have made the surprising discovery that the smallest possible mutation in a detoxification enzyme can alter what type of chemical reaction it will catalyse. The results has been published online by the respected journal, Proceedings of the National Academy of Sciences, PNAS.

In all living organisms, molecules are transformed into new chemical substances through processes which are catalysed by enzymes. Enzymes are proteins whose catalysing capacity enables chemical reactions which otherwise would not occur with sufficient speed or in a controlled way. The molecular evolution of enzymes is based on major or minor structural changes in a protein, which acquires new catalytic characteristics through the modification. The mutations in the genetic material which cause these structural changes have been regarded as random, but in certain cases it appears as if certain positions in a protein mutate more frequently than other positions in the protein. These positions are assumed to be particularly important to the biological functions of the protein.

Glutathione transferases are a family of enzymes which catalyse the detoxification of a broad spectrum of mutagens and carcinogens. Through major or minor structural variations, these enzymes have acquired new characteristics, thereby giving rise to more detoxification enzymes and a reinforced defence against toxic substances. A team of researchers led by Professor Bengt Mannervik has now shown that mutations in a single position in a glutathione transferase can dramatically alter the enzyme’s capacity to act selectively on various toxic substances. Through one type of mutation, the enzyme will become adapted to reactions in which the reactive group in the toxic substance is split off and replaced by glutathione, the body’s protective substance; through alternative mutations, the enzyme acquires the capacity to neutralise other reactive groups by linking them with glutathione.

“This discovery shows how the evolution of new enzyme functions may be quickly adapted to new needs. This is particularly significant for the defence against new toxins which may appear and threaten the survival of biological organisms,” says Bengt Mannervik.

This new study complements an earlier study by the research team, published in Science in January, which showed how a protein could be tailored to fulfil new functions through major changes to its structure.

Anneli Waara | alfa
Further information:
http://www.pnas.org/cgi/content/abstract/0600849103v1

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>