Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How does the brain know what the right hand is doing?

23.03.2006
A new experiment has shed more light on the multi-decade debate about how the brain knows where limbs are without looking at them.

You don’t have to watch your legs and feet when you walk. Your brain knows where they are. For decades scientists have debated two options for how the brain achieves this:

(1) the outflow hypothesis says that the brain monitors signals it sends to the muscles telling them how strongly to contract, and uses this to predict where the limb has moved to;

(2) the inflow hypothesis suggests that the brain relies on information from sensors within tissues that say how far a limb has moved.

While there has been plenty of evidence that inflow plays a role, no one before has been able to show definitively that outflow is also important.

Now research just published in The Journal of Physiology provides evidence that outflow is involved. Working at the Prince of Wales Medical Research Institute in Sydney, the Australian research team asked subjects to sit at a bench and place their right hand through a screen so they couldn’t see it. The hand was clamped so that the researchers could move it, but the subjects could only push against a fixed plate. The researchers then moved the hand and the subjects had to say which way it was pointing. The researchers then asked the subjects to push against the plate, and say where they thought the hand had moved to. The researchers inflated a cuff around the arm, cutting off blood flow and temporarily paralysing and anaesthetising the arm. They then repeated the tests.

Before the cuff was inflated, the subjects accurately indicated where their hand was pointing, both when they were resting and when they were pushing against the plate. After the arm was paralysed and anaesthetised, the subjects were unable to detect when researchers moved their hand, but incorrectly thought that they were still able to move it themselves when they tried to push against the plate.

‘The fact that the person thought they had changed the position of their paralysed hand, even though they hadn’t, shows that the perception of limb position is at least partly driven by outflow commands going to the muscles. There were no incoming signals from receptors, so this cannot have been responsible for the illusion,’ says Dr Janet Taylor, one of the authors of the paper.

The experiment provides a new and intriguing illusion that sheds light on how we learn to move accurately, as well as indicating why some people who have had limbs amputated still feel as if they can move their ‘phantom’ limb.

Lucy Mansfield | alfa
Further information:
http://www.blackwellpublishing.com/tjp

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>