Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover basic defect in cystic fibrosis airway glands

20.03.2006


Scientists at Stanford University have determined that the buildup of sticky mucus found in cystic fibrosis is caused by a loss in the epithelial cell’s ability to secrete fluid. This research appears as the "Paper of the Week" in the March 17 issue of the Journal of Biological Chemistry, an American Society for Biochemistry and Molecular Biology journal.



Cystic fibrosis is the most common, fatal genetic disease in the United States. It causes the body to produce thick, sticky mucus that builds up in the lungs and blocks the airways. This makes it easy for bacteria to grow and leads to repeated serious lung infections. The thick, sticky mucus can also block tubes in the pancreas, preventing digestive enzymes from reaching the small intestine.

The disorder results from mutations in the gene for the cystic fibrosis transmembrane conductance regulator (CFTR), a membrane channel regulator essential for proper salt and water movement across some epithelia. Currently, there are two essentially opposite explanations for the inability of the body to clear mucus from the airways in cystic fibrosis. The first is that the defective CFTR is unable to aid in fluid secretion in cystic fibrosis airway glands. The second explanation is that the glands still secrete fluid via non-CFTR pathways, but the fluid is reabsorbed by other channels. In fact, it has been proposed that one of CFTR’s functions is to inhibit the activity of a channel called the epithelial Na+ channel (ENaC).


Nam Soo Joo and colleagues at Stanford University attempted to determine which hypothesis was correct by measuring the secretion from glands from patients with cystic fibrosis and from normal pigs. They added ENaC inhibitors to the glands to determine if the channel plays a role in mucus clearance. The researchers found no evidence that the inhibitors altered secretion rates in either normal or cystic fibrosis glands. This suggested that loss of CFTR-mediated fluid secretion is the culprit in cystic fibrosis.

"We previously showed that cystic fibrosis airway glands have defective gland secretion in response to certain drugs," explains Joo. "The results of our present study provide evidence that the defective cystic fibrosis gland secretion is not due to a potentially excessive fluid reabsorption pathway within glands but is due to most likely to a lack of fluid secretion from cystic fibrosis glands."

Nicole Kresge | EurekAlert!
Further information:
http://www.asbmb.org
http://www.jbc.org

More articles from Life Sciences:

nachricht Switch-in-a-cell electrifies life
18.12.2018 | Rice University

nachricht Plant biologists identify mechanism behind transition from insect to wind pollination
18.12.2018 | University of Toronto

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>