Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Botulism Toxin’s Insidious Route into Nerve Cells

17.03.2006


Botulinum neurotoxin A can be either the greatest wrinkle remover or one of the world’s most potent biological weapons. To perform either job, however, the toxin must first find a way to enter cells.



But understanding how the toxin — one of seven neurotoxins produced by the bacterium Clostridium botulinum — enters nerve cells has proved elusive for scientists. Despite a decade-long search for the receptor by labs around the world, researchers had come up empty handed.

Now, a research team led by Howard Hughes Medical Institute (HHMI) researcher Edwin R. Chapman reports that it has identified the cellular receptor for botulinum neurotoxin A. The group’s work was published in the March 16, 2006, edition of ScienceXpress, which provides electronic publication of selected Science papers in advance of print. The finding offers important new insights that suggest how the toxin shuts down nerve cells with deadly efficiency.


In the clinic, the toxin, which is also known as botox, is used to treat forehead wrinkles, migraine headaches, urinary retention, eye muscle disorders, and excessive sweating. The same toxin also has more nefarious uses, and is considered a potential bioterror threat because it can kill people by paralyzing motor nerves in diaphragm muscles, causing breathing to stop. Lack of knowledge about the identity of the cell surface receptor that botulism toxin A uses to invade nerve cells has hindered the development of new antidotes to the toxin.

“People thought that since these were the most potent toxins known to humans, it would be easy to find the receptors,” said Chapman, whose HHMI laboratory is at the University of Wisconsin-Madison. However, only a handful of proteins had been identified that appeared to interact with the toxin. But none of these proteins turned out to be the receptor, he said.

According to Chapman, researchers had long known how botulinum neurotoxin A attacks the nerve cell’s internal molecular machinery. But the identity of the neuronal surface protein that the toxin recognized and used to gain entry into the cell was unknown.

“We decided to study the entry route used by these toxins first,” said Chapman. Using cultured neurons and mouse diaphragms as model systems, postdoctoral fellow Min Dong and Felix Yeh in Chapman’s laboratory, revealed that the neurotoxin enters neurons when empty synaptic vesicles are being recycled from the cell surface to the cell’s interior. Synaptic vesicles are sac-like cargo carriers in neurons that haul neurotransmitters from the cell’s interior to the synapses, which are the junctions between neurons. At the synapse, neurotransmitters are released, triggering nerve impulse in neighboring neurons.

“Our uptake experiments with all the toxins showing that many of them are taken up through synaptic vesicles made our life simple, because almost all synaptic vesicle proteins had already been identified by our colleagues. Furthermore, there are only a handful of synaptic vesicle proteins that contain domains that are exposed on the cell surface,” said Chapman.

Thus, when Dong and Yeh screened the major vesicle proteins for binding to the neurotoxin, they found a high level of specific binding to one called SV2. Furthermore, the researchers found they could block the toxin’s action in neurons by adding the piece of the SV2 protein that they had discovered was the SV2 protein’s binding site to the toxin.

The researchers then proceeded to study the interaction between the toxin and SV2 in cell cultures, tissues and in whole mice. Co-author Roger Janz of the University of Texas-Houston Medical School supplied the Wisconsin researchers with knockout mice that lacked certain versions of SV2. The Wisconsin group found that the neurons that lack SV2 do not take up botox, but they do take up the toxin when SV2 is expressed. These findings demonstrated that SV2 is the functional receptor for Botox, Chapman said.

Other key mouse experiments were done in the laboratory of co-authors Eric Johnson and William Tepp in the Food Research Institute at the University of Wisconsin. They found that mice engineered to lack versions of the SV2 protein showed significantly longer survival times than did normal mice when exposed to the toxin.

The identification of SV2 as the neurotoxin A receptor raises the possibility of designing protective drugs that would interfere with the toxin’s action, said Chapman. He said his laboratory will aid such efforts by concentrating on developing a more detailed understanding of the molecular interaction between the toxin and its receptor.

Chapman said that this finding and others’ studies on the botulinum neurotoxins have revealed why they are models of lethal efficiency. “The cool thing is that the neurotoxin receptor is on actively recycling synaptic vesicles, so the toxin targets only active neurons and shuts them down,” he said. “There is no wasted toxin, because once a nerve terminal is shut down, it doesn’t take up any more toxin. That leaves more toxin around to enter nerve terminals that have yet to be inhibited. That’s pretty clever.”

Jim Keeley | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>