Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical reaction yields ties that bind permanently

15.03.2006


Devising a nifty variation on a tested method to bind compounds useful in biological and medical research, a group of chemists at the University of Illinois at Chicago has discovered a new way to make permanent these bindings called ligation reactions.



The group, led by David Crich, distinguished professor of chemistry at UIC, reports their findings in the March 1 issue of the Journal of the American Chemical Society.

Crich, graduate student Venkataramanan Krishnamurthy and post-doctoral researcher Thomas Hutton modified a common reaction called a disulfide ligation, used to bridge the amino acid cysteine with a related sulfur-containing compound called a thiol.


"It’s done in water and at room temperature and is widely applied by biochemists to conjugate all kinds of molecules onto proteins to make haptens for antibody generation," said Crich. "It has many applications."

But the disulfide ligation is not permanent, said Crich, which limits its usefulness in developing new medicines.

Crich’s goal is to devise a room-temperature, water-based method to do protein glycosylation -- basically the process of hanging carbohydrate groups onto proteins.

"Glycosylated proteins are enormously important in immunology, as markers for cancer, and even as potential cancer vaccines," he said.

Crich’s lab is good at performing glycosylation reactions, but needed to find a process for doing it in aqueous solutions and at room temperature. His group found a clue looking back at a reaction first described in the 1960s, in which compounds called allylic disulfides were rearranged to form a permanent linkage by removing one atom of sulfur.

But that chemistry, developed by Jack Baldwin, then at MIT and now at Oxford University, required many hours of heating at temperatures around 80 degrees Celsius.

"Our intention was to modify this chemistry to make it run at room temperature," said Crich. "What we decided to do was to replace one of the sulfur atoms in allylic disulfide with a selenium atom."

Crich’s laboratory created an allylic selenosulfide that proved to work well at room temperatures in aqueous solutions, and provide a permanent ligation.

Crich modestly calls this work "the easy bit," adding that protein glycosylation is the real challenge ahead.

"That’s important for drug delivery, particularly with long-acting drugs," he said. "There’s a multitude of potential applications in combinatorial chemistry."

Paul Francuch | EurekAlert!
Further information:
http://www.uic.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>