Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein that regulates quiescent blood stem cells may enhance recovery from radiation and chemo

14.03.2006


Scientists have uncovered new information about what orchestrates the complex balance between blood stem cells and mature blood cells, a relationship that is often disrupted in leukemia. The results, published in the March issue of Cancer Cell, will lead to a better understanding of the behavior of leukemic cells and may have vital clinical applications for patients recovering from chemotherapy, radiation therapy, or bone marrow transplantation.



Recent studies have implicated reduced levels of a transcription factor called MEF with subtypes of leukemia. Drs. Stephen D. Nimer and Daniel Lacorazza from Memorial Sloan-Kettering Cancer Center and colleagues examined the blood cells of mice that do not express MEF in their bone marrow and found an increased population of hematopoietic (blood-forming) stem cells (HSCs). HSCs are immature cells in the bone marrow that have the capacity to differentiate into all types of mature blood cells. A delicate balance exists between self-renewal and differentiation of HSCs because the body must retain a sufficient population of HSCs while continually producing the multitude of new blood cells that are needed each day.

The researchers demonstrated that MEF regulates a little-understood state of quiescence that enables HSCs to exist in a kind of suspended animation until they are recruited to promote rapid repopulation of depleted blood cells, as would be needed following treatment with chemotherapy or radiation therapy. MEF-deficient mice accumulated quiescent HSCs with the capacity for repopulation and demonstrated enhanced resistance to the effects of chemotherapeutic drugs and radiation, which is also seen in wild-type mice transplanted with MEF-deficient HSCs. "This feature can also be helpful to maintain HSCs in an undifferentiated state during gene therapy protocols," explains Dr. Lacorazza, now a faculty member at Baylor College of Medicine.


These results suggest that MEF regulates HSCs’ decision to remain quiescent or divide, and the researchers speculate that treatments to diminish MEF may improve recovery from chemotherapy and radiation. However, it is important to point out that while reduced expression of MEF might enhance recovery after myelosuppression, it is possible that certain leukemic stem cells may also be protected from these same treatments. "Myelotoxicity induced by chemotherapy or radiotherapy could be prevented by maintaining stem cells in a quiescent state during their administration to cancer patients. However, another implication of our work is that tumor stem cells are more quiescent than more differentiated tumor cells and could use similar mechanisms to resist the effects of chemotherapy or radiation," explains Dr. Nimer.

Joanne Nicholas | EurekAlert!
Further information:
http://www.mskcc.org

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>