Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When is an ant like a bicycle?

30.10.2001


Little and large ants cooperate to carry a scorpion leg
© N.R. Franks


Army ants team little with large to lift heavy loads.

If you can’t see the point of the miniature back wheel on a penny-farthing bicycle, try riding a unicycle or watch an ant colony. Ants have realized that, to carry a heavy load, two supports are better than one - even if they seem comically mismatched.

When army ants partner up to carry a lump of food too big for a single ant to transport, an unusually large worker ant takes the front, and an unusually small one, the back, Nigel Franks of the University of Bristol, UK, and his colleagues have found1. Two such ants can carry a load heavier than the sum of their individual abilities.



An ant duo is like a penny-farthing, says Franks, because the big front provides power and steers. The small rear shifts the centre of gravity to between the two ends, making the whole system much more stable.

This is another example of how social insects rely on the colony to pass on genes that drive them to evolve sophisticated cooperation, explains evolutionary biologist Francis Ratnieks of the University of Sheffield, UK. Teamwork makes the most of the colony’s workforce.

Ants’ specialized division of labour is like that in a football team, says Ratnieks. "You can’t just choose 11 players at random, and the centre forward can’t play in goal."

There are other big/small collaborations in insect societies, says Ratnieks. Such squads defend the nests of the European ant Pheidole pallidula against intruders from other colonies of the same species. "A lot of little ants hold the intruder down, and a big one comes along and chops its head off," he says.

Team building

Rainforest army ants send out raiding parties of up to a quarter of a million individuals. These devour just about every invertebrate in their path, cutting them into chunks if necessary, and carting them back to the temporary nest. Franks and his colleagues found penny-farthing duos in the Central American Eciton burchelli and the smaller African Dorylus wilverthi.

How big and little ants team up is a mystery. Army ant lines move at a constant rate; an ant struggling with a lump of meat bigger than it can manage might attract helpers by causing traffic congestion.

When the researchers remove a team and put their food load back among the ants they see "a mêlée of workers, almost like a rugby scrum", according to Franks. "Then - bang - the perfect team emerges, which weighs almost exactly the same as the first team," he reports.

Ant alliances aren’t permanent. "They’re more like pick-up teams," says Franks. They break up and do something else rather than go around looking for another piece of food equally well suited to their capabilities as a couple.

References
  1. Franks, N. R., Sendova-Franks, A. B. & Anderson, C. Division of labout within teams of New World and Old World army ants. Animal Behaviour, 62, 635 - 642, (2001).


JOHN WHITFIELD | Nature News Service
Further information:
http://www.nature.com/nsu/011101/011101-6.html
http://www.nature.com/nsu/

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>