Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When is an ant like a bicycle?

30.10.2001


Little and large ants cooperate to carry a scorpion leg
© N.R. Franks


Army ants team little with large to lift heavy loads.

If you can’t see the point of the miniature back wheel on a penny-farthing bicycle, try riding a unicycle or watch an ant colony. Ants have realized that, to carry a heavy load, two supports are better than one - even if they seem comically mismatched.

When army ants partner up to carry a lump of food too big for a single ant to transport, an unusually large worker ant takes the front, and an unusually small one, the back, Nigel Franks of the University of Bristol, UK, and his colleagues have found1. Two such ants can carry a load heavier than the sum of their individual abilities.



An ant duo is like a penny-farthing, says Franks, because the big front provides power and steers. The small rear shifts the centre of gravity to between the two ends, making the whole system much more stable.

This is another example of how social insects rely on the colony to pass on genes that drive them to evolve sophisticated cooperation, explains evolutionary biologist Francis Ratnieks of the University of Sheffield, UK. Teamwork makes the most of the colony’s workforce.

Ants’ specialized division of labour is like that in a football team, says Ratnieks. "You can’t just choose 11 players at random, and the centre forward can’t play in goal."

There are other big/small collaborations in insect societies, says Ratnieks. Such squads defend the nests of the European ant Pheidole pallidula against intruders from other colonies of the same species. "A lot of little ants hold the intruder down, and a big one comes along and chops its head off," he says.

Team building

Rainforest army ants send out raiding parties of up to a quarter of a million individuals. These devour just about every invertebrate in their path, cutting them into chunks if necessary, and carting them back to the temporary nest. Franks and his colleagues found penny-farthing duos in the Central American Eciton burchelli and the smaller African Dorylus wilverthi.

How big and little ants team up is a mystery. Army ant lines move at a constant rate; an ant struggling with a lump of meat bigger than it can manage might attract helpers by causing traffic congestion.

When the researchers remove a team and put their food load back among the ants they see "a mêlée of workers, almost like a rugby scrum", according to Franks. "Then - bang - the perfect team emerges, which weighs almost exactly the same as the first team," he reports.

Ant alliances aren’t permanent. "They’re more like pick-up teams," says Franks. They break up and do something else rather than go around looking for another piece of food equally well suited to their capabilities as a couple.

References
  1. Franks, N. R., Sendova-Franks, A. B. & Anderson, C. Division of labout within teams of New World and Old World army ants. Animal Behaviour, 62, 635 - 642, (2001).


JOHN WHITFIELD | Nature News Service
Further information:
http://www.nature.com/nsu/011101/011101-6.html
http://www.nature.com/nsu/

More articles from Life Sciences:

nachricht New sensor detects rare metals used in smartphones
24.04.2019 | Penn State

nachricht Controlling instabilities gives closer look at chemistry from hypersonic vehicles
24.04.2019 | University of Illinois College of Engineering

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Proteins stand up to nerve cell regression

24.04.2019 | Life Sciences

New sensor detects rare metals used in smartphones

24.04.2019 | Life Sciences

Controlling instabilities gives closer look at chemistry from hypersonic vehicles

24.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>