Manchester scientists create new bio-gel for 3D cell culture

Scientists at The University of Manchester have created a new type of ‘bio-gel’ which provides a pH neutral environment for culturing cells in 3D, as published in the journal Advanced Materials (March 2006).


The gel is the first pH neutral material made from combinations of dipeptides (pairs of amino acids) to provide an environment in which cells can be cultured under physiological conditions.

Uniquely, the gel mimics the properties of cell scaffolds which naturally occur in the body and has potential applications for wound healing and tissue engineering.

Cell scaffolds, known as the extra cellular matrix (ECM), are naturally produced by the body to grow new cells in order to repair damaged tissue. Like the ECM, the gel acts like a scaffold in which cells can grow.

In their paper, ‘Nanostructured Hydrogels for Three-Dimensional Cell Culture Through Self-Assembly of Fluorenylmethoxycarbonyl-Dipeptides’, Dr Rein Ulijn and collaborators describe how the gel is created through a process of self-assembly.

Dr Ulijn said: “We have used combinations of modified dipeptides which act like building blocks and spontaneously assemble into nanometer sized fibres when exposed to physiological conditions, to create a fibrous gel-like structure in which cells can be cultured. Because thismaterial is made up of 99% water and is pH neutral, it is compatible with biological systems.

“By using dipeptide building blocks instead of much larger oligo-peptides used by other researchers, we have greater control over the fibrous architecture and the physical properties of the gels. These materials offer us great potential for future applications in wound healing and regenerative medicine.”

Dr Ulijn and his collaborators have successfully cultured cartilage cells using the gel. They found that both the properties of the gels formed and the cell response to the gels could be controlled by using different combinations of di-peptides. The team recently received a £630k award from EPSRC to develop the gels further.

Media Contact

Simon Hunter alfa

More Information:

http://www.manchester.ac.uk

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors