Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Centrioles – Counter Of Life

07.03.2006


The Tbilisi researchers J.B. Tkemaladze (Center for systems analysis of Georgia) and K.N. Chichinadze from the Beritashvili Institute of Physiology, Academy of Sciences of Georgia, believe that centrioles – protein structures that participate in animal cell division – are responsible for age-related changes of cells in a multicellular organism. Animal cells can divide for a strictly defined number of times, after which they inevitably perish, and these are centrioles in particular that, in researchers’ opinion, act as a fission counter.



Ageing of the organism is ageing of its cells. It starts when the cell becomes quite differentiated, that is specialized, in the course of a certain number of fissions. Such cell can live very long, neurons, for example, live for several dozens of years, but as time passes, its “capacity for work” decreases, and the cell perishes. Experiments of recent years proved that the number of divisions allowed for the cell does not depend on the length of end sections of its chromosomes, telomer. According to the Georgian researchers’ opinion, “ageying factors” should be sought not in genome nor even in the cellular nucleus, otherwise scientists would not have succeeded to grow cloned animals from the body cell’s nucleus. Therefore, ageing factors should be contained in cytoplasm, and if we recall that the age of cells is determined not by the time but by the number of cellular divisions, and the division process is directly connected with centrioles, then centrioles in particular are most logical to be considered the clock measuring cellular life.

Centrioles – these are two protein cylinders located side by side, transversely to each other. They redouble before each cellular division. Besides division, centrioles “guide” formation of protein bands and microtubules that constitute the skeleton of a cell or cytoskeleton. According to the recent data, the role of centrioles and cytoskeleton is extremely important in animal cell. It is cytoskeleton that coordinates cell metabolism, initial phases of embyronic growth, cells consolidation into a tissue. Microtubules determine transfer of practically all intracellular components, including those during cellular division. Cytoskeleton conducts external signals into the cellular nucleus, including the command to trigger apoptosis – cell extermination. Most probably, this structure participates in malignant transformation of the cell, in any case, it regulates the work of multiple important oncogenes. And, finally, centrioles may probably control both the telomer length and the telomerase enzyme work.


When the cell stops dividing and specializes, its centrioles deteriorate irreversibly. Only the cells that are capable of restoring this damage, can recover the ability to division. Such are, for example, cells of adult animals’ liver, one of a few organs capable of regeneration.

According to Georgian researchers’ hypothesis, the cells initially devoid of centrioles and cytoskeleton, or the cells where these structures appeared for the first time, cannot count their divisions and therefore are, firstly, immortal, and secondly, not specialized. These conditions are met by higher plants’ cells, fertilized ovum and early blastomeres of some animals. These cells are really immortal and not specialized. If we spoil centrioles of a differentiated cell in some way, it will also acquire immortality. Such are cancerous and transformed cells, where a lot of researchers have discovered drastic change of the cytoskeleton structure and centrioles’ orientation. Malignant cells are immortal, and the level of their specialization corresponds to the evolution stage where transformation caught them.

As the Georgian researchers can explain behavior of all types of immortal cells of multicellular organisms, they assume that the centriole model of ageing has the right to exist and sooner of later it will be proved experimentally.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>