Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCR researchers design chip that can improve citrus varieties

03.03.2006


GeneChip Citrus Genome Array launched by Affymetrix, Inc.


The GeneChip® Citrus Genome Array can improve citrus varieties and suggest ways to better manage them.



UC Riverside researchers, in partnership with Affymetrix, Inc., have designed a chip – the GeneChip® Citrus Genome Array – that can improve citrus varieties and suggest ways to better manage them. By helping determine which genes are turned on in a tissue of citrus – genes that are associated with taste, acidic content and disease, for example – the chip provides information useful to researchers for rectifying existing problems and making improvements to the fruit.

The citrus array will be used to develop new diagnostic tools for the improvement of citrus agriculture and post-harvest fruit handling, as well as to understand mechanisms underlying citrus diseases. Researchers will study traits pertinent to the citrus industry such as easy peeling, seedlessness, flavor components, pest and disease control, nutritional characteristics, and reproductive development.


"The citrus array helps us quickly examine a certain trait in citrus," said Mikeal Roose, a professor of genetics in the Department of Botany and Plant Sciences at UCR and a leader of the three-year research project. "For a trait posing a problem for the consumer, such as an undesirable flavor, we can identify genes associated with the trait and target these for correction to improve the flavor. The chip also helps us address citrus diseases by helping us see what happens in cells when a citrus plant is under attack from a virus. And with this chip we can better understand what happens at the cellular level when oranges are put in cold storage after they are harvested, leading eventually to better methods of storage that improve fruit flavor."

Manufactured by Affymetrix, Inc., the GeneChip® Citrus Genome Array is made up of a glass wafer on to which nearly one million different pieces of citrus DNA are deposited on a grid or microarray using methods similar to those used to produce computer chips. The glass wafer is encased in a plastic container somewhat smaller than the size of a credit card.

To use the chip, researchers purify total RNA (which reflects the genes expressed in the tissue) from plant tissue, make a copy of these molecules with a chemical tag added, and then "wash" the chip with the RNA sample. If a gene is being expressed in the tissue, its corresponding RNA will be present and bind to the complementary DNA sequences on the chip. The locations of the bound RNA have a visible signal because of the tag, rather like bright and dim pixels on a computer screen. Analysis of which pieces of DNA on the chip have signals indicates which genes are expressed in the tissue.

The chip is the first commercial citrus microarray and allows analysis of expression of more than 20,000 different genes. The array will also be used to develop a detailed genetic map of citrus that will help researchers locate many genes. The map location information will be used to make the development of new varieties more efficient.

"This industry-supported effort both added to and made use of publicly available citrus sequences to develop an entirely new tool that will benefit all citrus researchers and help sustain the citrus industry locally and worldwide," said Timothy Close, a professor of genetics at UCR and a co-leader of the project. "We owe a special thanks to colleagues in the citrus community: Abhaya Dandekar at UC Davis, Bob Shatters, Jose Chaparro and Greg McCollum at the USDA Horticultural Research Lab, and Avi Sadka at Volcani Institute in Israel for sharing the full content of their citrus sequence data.

"Other colleagues in the United States, Japan and Spain who deposited sequences to the public repository maintained by the National Center for Biotechnology Information also made valuable contributions. The use of all available public data resulted in very nice coverage of the citrus genome. We are pleased with the outcome – the initial data from the citrus GeneChip have fulfilled our highest expectations."

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Life Sciences:

nachricht Nanotubes built from protein crystals: Breakthrough in biomolecular engineering
15.11.2018 | Tokyo Institute of Technology

nachricht Insect Antibiotic Provides New Way to Eliminate Bacteria
15.11.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>