Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Masterminding muscle development

28.02.2006


Dr. Lizi Wu (Dana Farber Cancer Institute) and colleagues report on a critical role for one of the three mammalian mastermind genes (Maml1) in myogenesis – assigning that first biological function to the mammalian MAML Notch co-activators.



"Our study uncovered an exciting and essential regulatory role for Maml1 in muscle development," says Wu.

Dr. Wu and colleagues generated MAML1-deficient mice, which displayed severe muscular dystrophy. The researchers showed that the modulation of MAML1 expression levels in cell culture experiments directly impacts the ability of the muscle gene transcription factor, MEF2C, to induce myogenesis: Increased MAML1 expression leads to enhanced myotube formation and increased expression of muscle-specific target genes, while reduced MAML1 expression impairs muscle cell differentiation. It appears that MEF2C and MAML1 work together in a complex to "turn on" several other genes that are required for muscle development and function.


However, MAML1’s pro-myogenic effects are only observed when Notch receptors are inactive. The authors believe that MAML1 serves as a co-activator for MEF2C, but upon Notch activation, MAML1 is recruited away from MEF2C by Notch, thereby down-regulating muscle-specific target genes and up-regulating Notch target genes. "Our study uncovered an exciting and essential regulatory role for the Maml1gene in myogenesis and suggested that a mis-regulation of Maml1 gene function might contribute to the pathology of muscle myopathies," explains Dr. Wu.

There are two other genes that are similar to MAML1 in humans: MAML2 and MAML3, and Wu and colleagues are working to determine their functions as well.

Heather Cosel | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>