Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mystery solved: Gold’s power against autoimmune diseases defined

27.02.2006


Gold compounds have been used for the treatment of rheumatoid arthritis and other autoimmune diseases for more than 75 years, but until now, how the metals work has been a mystery. Harvard Medical School researchers report in the Feb. 27 issue of Nature Chemical Biology that special forms of gold, platinum, and other classes of medicinal metals work by stripping bacteria and virus particles from the grasp of a key immune system protein.



"We were searching for a new drug to treat autoimmune diseases," says Brian DeDecker, PhD, HMS post-doctoral student in the Department of Cell Biology and a study co-author. At the time of this work, DeDecker was in the Harvard Medical School Institute of Chemistry and Cell Biology, which uses powerful chemical tools to illuminate complex biological processes and provide new leads for drug development. "But instead we discovered a biochemical mechanism that may help explain how an old drug works."

DeDecker and co-author Stephen De Wall, PhD, undertook a large-scale search for new drugs that would suppress the function of an important component of the immune system, MHC class II proteins, which are associated with autoimmune diseases. MHC class II proteins normally hold pieces of invading bacteria and virus on the surface of specialized antigen presentation cells. Presentation of these pieces alerts other specialized recognition cells of the immune system called lymphocytes, which starts the normal immune response. Usually this response is limited to harmful bacteria and viruses, but sometimes this process goes awry and the immune system turns towards the body itself causing autoimmune diseases such as Juvenile diabetes, Lupus, and rheumatoid arthritis.


During their search through thousands of compounds they found that the known cancer drug, Cisplatin, a drug containing the metal platinum, directly stripped foreign molecules from the MHC class II protein. From there, they found that platinum was just one member of a class of metals, including a special form of gold, that all render MHC class II proteins inactive.

In subsequent experiments in cell culture, gold compounds were shown to render the immune system antigen presenting cells inactive, further strengthening this connection. These findings now give researches a mechanism of gold drug action that can be tested and explored directly in diseased tissues.

In 1890, a German doctor named Robert Koch found that gold effectively killed the bacteria that caused tuberculosis. In the 1930s, based on a widely held but probably erroneous connection at the time between tuberculosis and rheumatoid arthritis, a French doctor, Jacques Forestier, developed the use of gold drugs for the treatment of rheumatoid arthritis. Gold drugs have been used since then as an effective treatment for this and other autoimmune diseases such as Lupus, but treatment can take months for action and sometimes presents severe side effects which have diminished their use in recent years.

With this new understanding of how these metals function, it may now be possible to develop a new generation of gold-based drugs for treating rheumatoid arthritis and other autoimmune diseases that are more effective with fewer side effects.

John Lacey | EurekAlert!
Further information:
http://www.hms.harvard.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>